Fraction (mathématiques)

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir Fraction.
Trois quarts de gâteau, un quart ayant été retiré.

En mathématiques, une fraction est un certain nombre de parts considérés après la division d'un nombre entier en parts égales. Par exemple, la fraction \frac{56}{8} désigne le quotient de 56 par 8. Elle est égale à 7 car 7 × 8 = 56. Dans cette fraction, 56 est appelé le numérateur et 8 le dénominateur.

Les nombres que l'on peut représenter par des fractions de nombres entiers sont appelés nombres rationnels. L'ensemble des rationnels est noté ℚ.

Il existe une définition plus générale et plus abstraite des fractions. Si (A, +, .) est un anneau intègre, on peut créer le corps des fractions de A. Ses éléments se notent (par analogie aux fractions d'entiers relatifs) \frac{a}{b} et possèdent les mêmes propriétés opératoires (somme, produit, simplification, ...) que les fractions de ℚ.

Sens usuel de la fraction[modifier | modifier le code]

Définition de la fraction[modifier | modifier le code]

Une fraction est une division non effectuée entre deux nombres entiers relatifs n et d ≠ 0. Elle est représentée comme suit :

n/d~ ou {}^{\textstyle n}\!\!\diagup\!\!{}_{\textstyle d} ou \frac{n}{d}.

Exemple : 3/7 signifie que l'on divise 3 par 7 ; on prononce cette fraction « trois septièmes ».

  • 3 est appelé numérateur parce qu'il indique un nombre de trois unités (les septièmes)
  • 7 est appelé dénominateur parce qu'il dénomme l'unité (le septième) avec laquelle on opère.

Si on mange les 3/7 d'une tarte, le numérateur 3 indique le nombre de parts que l'on mange alors que 7 indique le nombre total de parts, donc l'unité considérée.

On trouve aussi parfois la notation

n : d

ou encore

n ÷ d

les deux-points ou l'obélus remplaçant la barre de fraction.

Une fraction est dite impropre lorsque la valeur du numérateur est plus grande que celle du dénominateur.

Modélisation d'une fraction[modifier | modifier le code]

Pour comprendre et établir les règles de maniement des fractions, il existe deux méthodes différentes. La première consiste à faire usage de la géométrie. La fraction représente une portion d'aire d'une figure géométrique ou d'une longueur d'un côté d'un polygone, souvent un triangle. Démontrer les lois régissant les fractions revient à faire de la géométrie et à mesurer des aires ou des longueurs. Cette démarche est décrite dans l'article Algèbre géométrique.

Une autre démarche est de nature purement algébrique. Les nombres rationnels sont construits de manière abstraite à partir de classes d'équivalence d'entiers. L'addition et la multiplication issues des nombres entiers sont compatibles avec la classe d'équivalence, ce qui équipe l'ensemble des fractions d'une addition et d'une multiplication naturelles. Cette construction permet d'établir les lois régissant le comportement des fractions.

La démarche choisie ici correspond à la première décrite et est purement géométrique. Les méthodes utilisées s'appliquent pour les fractions d'entiers. La géométrie offre une autre méthode, permettant de généraliser les résultats au cas de fractions de deux nombres réels positifs. Elle est décrite dans l'article Algèbre géométrique.

Représenter une fraction[modifier | modifier le code]

Le but ici est de visualiser une fraction n/d.

La fraction peut être représentée par un dessin. Bien souvent une forme géométrique que l'on divise en plusieurs parties.

Fractions dont n < d[modifier | modifier le code]

Le dénominateur d indique le nombre de parties égales à dessiner dans la forme géométrique et le numérateur n indique le nombre de parties égales utilisées.

Par exemple, choisissons un rectangle comme forme géométrique et la fraction 3/4. Le dénominateur est 4 donc le rectangle sera divisé en 4 parties égales.

       
       

Le numérateur est 3 donc seules 3 parties égales seront utilisées.

       
       

Autre possibilité : Fraction3 4.svg

Fractions dont n > d[modifier | modifier le code]

Cette fraction sera équivalente au quotient de n/d, (qui représentera le nombre d'unité) suivi d'une fraction constituée par le reste de la division pour numérateur et d pour dénominateur.

Par exemple, pour la fraction 7/3, la division entière donne 2, il reste 1. Le quotient est 2 donc 2 unités, le reste 1 donc 2 1/3. Il est impossible de représenter ce genre de fraction par un schéma unique, nous utiliserons dès lors plusieurs formes géométriques similaires : Fraction7 3.svg

Prendre une fraction d'une quantité[modifier | modifier le code]

Pour prendre les 2/3 de 750, on divise 750 par 3, puis on multiplie le résultat par 2 :

750÷3 = 250 ; 250 × 2 = 500. Donc 2/3 de 750 = 500

Prendre a/b de c revient à diviser c par b et à multiplier le tout par a. Ou plus simplement, quand on connaît les règles de calcul sur les fractions, prendre a/b de c revient à multiplier a/b par c. Plus généralement, on constate que le « de » est remplacé par une multiplication. Il en est de même quand on calcule 75 % de c, on doit juste calculer 75 % multiplié par c. En effet, 75 % est une fraction : 75 % = 75/100 = 0,75.

Fractions équivalentes[modifier | modifier le code]

Si on multiplie, ou divise, le numérateur et le dénominateur d'une fraction par un même nombre, on obtient une fraction équivalente.

Exemple : Fraction2 3.svg (on a multiplié 2/3 par 2/2)

De manière générale, les fractions n/d et n'/d' sont équivalentes dès que n × d'= d × n'.

Exemple : Fraction6 9.svg

\frac{4}{6}=\frac{6}{9} car 6 \times 6 = 4 \times 9\, (on appelle ces deux produits les produits en croix).

Certaines fractions peuvent être simplifiées, c'est-à-dire que n et d peuvent être divisés par un même nombre mais le plus grand possible. Ce nombre s'appelle le PGCD (plus grand commun diviseur) de n et d. Après réduction, la fraction est dite irréductible.

Pour effectuer certaines opérations entre fractions, tous les dénominateurs des fractions doivent être égaux. Pour ce faire, il faut remplacer chaque fraction par une fraction équivalente, en s'arrangeant pour que tous les dénominateurs soient identiques. Ce dénominateur sera le plus petit nombre possible qui soit divisible par chaque dénominateur. Ce nombre s'appelle le PPCM (plus petit commun multiple) des dénominateurs. L'opération s'appelle réduire au même dénominateur.
Exemple :

\frac{3}{4}=\frac{3 \times 3\times 3\times 5}{4 \times 3\times 3\times 5}= \frac{135}{180}

\frac{1}{6}=\frac{1 \times 2\times 3\times 5}{6 \times 2\times 3\times 5}= \frac{30}{180}

\frac{5}{9}=\frac{5 \times 2\times 2\times 5}{9 \times 2\times 2\times 5}= \frac{100}{180}

\frac{14}{15}=\frac{14 \times 2\times 2\times 3}{15 \times 2\times 2\times 3}= \frac{168}{180}

Comparaison de fractions[modifier | modifier le code]

  • Pour un même numérateur, plus le dénominateur est petit plus la fraction est grande.
Exemple : Fraction comp1.svg
\frac{2}{3} > \frac{2}{5}
Le numérateur 2 est le même pour chaque fraction.
La comparaison des dénominateurs donne 3 < 5
  • Pour un même dénominateur, plus le numérateur est grand, plus la fraction est grande :
Exemple : Fraction comp2.svg
\frac{2}{7} < \frac{5}{7}
Le dénominateur 7 est le même pour chaque fraction.
La comparaison des numérateurs donne 2 < 5
  • Si les numérateurs et les dénominateurs sont différents, on peut toujours réduire les fractions au même dénominateur et comparer alors les numérateurs : Comparaison de 1/4 et 2/5
1/4 =5/20 et 2/5 = 8/20. Or 5 < 8 donc 5/20 < 8/20 donc 1/4 < 2/5

Remarque : on peut aussi utiliser l'écriture décimale comme par exemple 1/4 = 0,25 et 2/5 = 0,4, 0,25 < 0,4 donc 1/4 < 2/5.

Écriture décimale, écriture fractionnaire[modifier | modifier le code]

Toute fraction possède un développement décimal fini ou infini périodique qui s'obtient en posant la division de n par d.

1/4 = 0,25
2/3 = 0,666...(période 6)
17/7 = 2,428571428571...(période 428571)

Inversement, tout nombre décimal ou possédant un développement décimal périodique peut s'écrire sous forme de fraction.

Cas du nombre décimal[modifier | modifier le code]

Il suffit de prendre comme numérateur le nombre décimal privé de sa virgule et comme dénominateur 10nn est le nombre de chiffres après la virgule :

0{,}256 = \frac{256}{1000}=\frac{32}{125}
15{,}16 = \frac{1516}{100}=\frac{379}{25}

Cas du développement décimal illimité[modifier | modifier le code]

On commence par s'occuper de la partie entière : 3,4545... = 3 + 0,4545...

Cas du développement décimal périodique simple[modifier | modifier le code]

Un nombre périodique simple est un nombre décimal dans lequel la période commence immédiatement après la virgule. 0,666... ou 0,4545... ou 0,108108...

Pour le numérateur, il suffit d'utiliser la période tandis que le dénominateur sera composé d'autant de 9 qu'il y a de chiffres composant la période.

Par exemple, pour 0,4545... la période est 45 et est composée de deux chiffres, on obtient la fraction 45/99 = 5/11.

Par conséquent : 3,4545... = 3 + 5/11 = 38/11.

Sinon, posons x = 0,4545454545...

100x = 45,4545454545... = 45 + x donc 100x - x = 45,4545454545... - 0,4545454545... = 45 donc 99x = 45 donc x = 45/99.

Cas du développement décimal périodique mixte[modifier | modifier le code]

Un nombre décimal périodique mixte est un nombre décimal dans lequel la période ne commence pas immédiatement après la virgule, par exemple : 0,8333... ou 0,14666...

Pour trouver le numérateur de la fraction, il faut soustraire la valeur mixte de la valeur mixte suivie de la première période. Quant au dénominateur, il sera composé d'autant de 9 qu'il y a de chiffres composant la période, suivis d'autant de zéros qu'il y a de chiffres après la virgule composant la valeur mixte.

Exemple : 0,36981981...
valeur mixte : 36
Valeur mixte suivie de la première période : 36981
Numérateur = 36981 - 36 = 36945

Dans la valeur 0,36981981..., la période 981 est constituée de 3 chiffres donc le dénominateur sera constitué d'une série de trois 9 suivis de deux zéros puisque la valeur mixte 36 est composée de deux chiffres. Finalement on obtient 0,36981981... = 36945/99900 = 821/2220.

Exemple 2 : 1,24545...= \frac{1245-12}{990}=137/110.

Opérations sur les fractions[modifier | modifier le code]

Addition et soustraction[modifier | modifier le code]

Pour un dénominateur commun[modifier | modifier le code]

Il suffit d'additionner ou de soustraire le numérateur de chaque fraction et de conserver le dénominateur commun.

Exemple d'une somme :

Fraction sum1.svg
Fraction sum2.svg

Exemple d'une différence :

Fraction diff.svg

Pour un dénominateur différent[modifier | modifier le code]

Avant d'effectuer l'opération, chaque fraction doit être transformée en une fraction équivalente dont le dénominateur leur soit commun.
Exemple : Fraction sum3.svg

A = \frac{1}{6} + \frac{4}{9}
A = \frac{3}{18} + \frac{8}{18}
A = \frac{11}{18}

Multiplication[modifier | modifier le code]

La multiplication de deux fractions est simple à effectuer mais il n'est pas simple de comprendre pourquoi elle fonctionne ainsi.

\frac {2}{15} \times \frac {7} {11} = \frac {2 \times 7} {15 \times 11} = \frac {14} {165}

En voici une explication, basée sur une compréhension intuitive des fractions.

On peut comprendre sept onzièmes comme sept fois un onzième (voir les représentations graphiques ci-dessus) soit \frac {7} {11} comme {7} \times \frac {1}{11}. Ainsi multiplier \frac {2}{15} par \frac {7} {11} revient à effectuer \frac {2}{15} \times 7 \times \frac {1} {11} = \frac {2 \times 7}{15} \times \frac {1}{11}.
Mais multiplier par un onzième revient à diviser par 11, c'est-à-dire à multiplier le dénominateur par 11 (les parts sont 11 fois plus petites), soit : \frac {2 \times 7} {15 \times 11} .

Autres fractions[modifier | modifier le code]

Usage[modifier | modifier le code]

Alors que les Français utilisent volontiers les nombres à virgule, les Anglo-saxons préfèrent souvent exprimer les parties non entières par des fractions — sans doute en raison de la différence culturelle (songer par exemple à la popularité du système métrique et du système impérial dans les deux cultures). Par exemple, ils diront d'une personne qu'elle mesure 5 pieds ⅔ et non pas 5,67 pieds.

Problèmes historiques[modifier | modifier le code]

  1. J’ai trouvé une pierre mais je ne l’ai pas pesée. Après lui avoir ajouté un septième de son poids et avoir ajouté un onzième du résultat, j’ai pesé le tout et j’ai trouvé : 1 ma-na [unité de masse]. Quel était à l’origine le poids de la pierre ? (problème babylonien, tablette YBC 4652, problème 7)
  2. Un nombre augmenté de son septième donne 19. Quel est ce nombre ? (papyrus Rhind, problème 24)
  3. Un nombre augmenté de son quart donne 15. Quel est ce nombre ? (papyrus Rhind, problème 26)
  4. Supposons que l’on ait 9 tiges d’or jaune et 11 tiges d’argent blanc qui, à la pesée, ont des poids tout juste égaux. Si l’on échange entre elles une de leurs tiges, l’or devient plus léger de 13 liang [unité de masse]. On demande combien pèsent respectivement une tige d’or et une tige d’argent. (Les neuf chapitres sur l'art mathématique, problème 7.17)
  5. Une lance a la moitié et le tiers dans l’eau et neuf paumes à l’extérieur. Je te demande combien elle a de long. (problème médiéval)

Étymologie[modifier | modifier le code]

Le terme fraction, apparu en français à la fin du XIIe siècle, est un dérivé du bas latin fractio - « action de briser » - utilisé dans la terminologie mathématique médiévale pour désigner la « division ». Ce terme lui-même provient du latin classique frangere - « briser » - qui provient de la racine indo-européen °bhreg qui a la même signification et dont dérive la racine gotique brikan qui donne break en anglais et brechen en allemand[1].

Notes et références[modifier | modifier le code]

  1. Alain Rey (dir.), Dictionnaire historique de la langue française, éd. Le Robert, 1998, tome II, p. 1478

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :