Fonction mesurable

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

Soient E et F des espaces mesurables munis de leurs tribus respectives ℰ et ℱ.

Une fonction f : EF est dite (ℰ, ℱ)-mesurable si la tribu image réciproque par f de la tribu ℱ est incluse dans ℰ, c'est-à-dire si :

\forall B \in \mathcal F, \ f^{-1}(B) \in \mathcal E.

Applications à valeurs réelles[modifier | modifier le code]

Si F est l'ensemble des réels et si ℱ est sa tribu borélienne, on dira simplement que f est une fonction mesurable sur (E, ℰ).

La tribu borélienne sur ℝ étant engendrée (par exemple) par l'ensemble des demi-droites de la forme ]a , +∞[, le lemme de transport assure que f est une fonction mesurable sur (E, ℰ) si et seulement si l'image réciproque par f de chacune de ces demi-droites est dans ℰ. Par exemple : toute fonction réelle d'une variable réelle qui est monotone est borélienne.

Pour les fonctions à valeurs dans la droite achevée = ℝ ∪ {–∞, +∞}, un résultat analogue se vérifie avec les intervalles ]a , +∞].

Propriétés de passage à la limite[modifier | modifier le code]

Soient E un espace mesurable et (fn)n une suite de fonctions mesurables de E dans ℝ (ou même dans ). Alors la fonction f définie par f = infn fn (à valeurs dans ) est mesurable. En effet, l'image réciproque par f de ]a , +∞] peut s'écrire

\bigcup_{n \in\N} \{x \in E\mid f_n(x) > a\}

et cet ensemble est une réunion dénombrable d'éléments de ℰ, donc un ensemble mesurable.

Par passage aux opposés, on en déduit que, si les fonctions fn de E dans sont toutes mesurables, alors la fonction supn fn l'est également.

On peut alors montrer que les fonctions limites inférieure et supérieure liminfn → ∞ fn et limsupn → ∞ fn sont, elles aussi, mesurables.

En particulier :

  • les quatre dérivées de Dini d'une fonction mesurable de ℝ dans ℝ sont elles-mêmes mesurables ;
  • toute limite simple de fonctions mesurables est mesurable (ce qui d'ailleurs se démontre directement et plus généralement pour des fonctions à valeurs dans un espace métrique – mais pas à valeurs dans un espace topologique quelconque[1]) ;
  • toute fonction dérivée est mesurable.

Approximation par des fonctions continues[modifier | modifier le code]

Si (E, ℰ) est un espace métrisable séparable muni de sa tribu borélienne, toute fonction mesurable sur E (à valeurs réelles) et bornée est limite monotone de fonctions bornées continues[2].

Notes et références[modifier | modifier le code]

  1. (en) Richard M. Dudley (en), Real Analysis and Probability, CUP,‎ 2002, 2e éd. (ISBN 978-0-521-00754-2, lire en ligne), p. 125-126
  2. (en) Charalambos D. Aliprantis (en) et Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, Springer,‎ 2007, 3e éd. (ISBN 978-3-540-32696-0, lire en ligne), p. 128

Article connexe[modifier | modifier le code]

Théorème de la limite simple de Baire