Fonction logistique (Verhulst)

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir Fonction logistique.
Fonction logistique, cas particulier : sigmoïde.

En mathématiques, les fonctions logistiques sont les fonctions ayant pour expression

f(t) = K\frac{1}{1+ae^{-rt}}K et r sont des réels positifs et a un réel quelconque.

Ce sont les solutions en temps continu du modèle de Verhulst.

Pour a > 0, leur courbe représentative a la forme d'un S ce qui fait qu'elles sont parfois appelées sigmoïde. Ces fonctions ont été mises en évidence par Pierre François Verhulst (vers 1840) qui cherchait un modèle d'évolution de population non exponentielle comportant un frein et une capacité d'accueil K. Mais elles servent aussi à modéliser des réactions autocatalytiques, leur courbe portant alors le nom de courbe autocatalytique. Le nom de courbe logistique leur a été donné par Verhulst sans que l'on sache exactement pourquoi. Il écrit en 1845 dans son ouvrage consacré à ce phénomène : « Nous donnerons le terme de logistique à cette courbe ». L'auteur n'explique pas son choix mais « logistique » a même racine que logarithme et logistikos signifie « calcul » en grec[1].

Fragments d'histoire[modifier | modifier le code]

Les fonctions logistiques sont initialement créées par Pierre François Verhulst. Chargé par son professeur Adolphe Quetelet d'étudier un modèle d'évolution de population qui ne soit pas exponentiel, il propose en trois publications (1838-1845-1847) un nouveau modèle tenant compte d'un frein dans le développement de la population et prouve que ce modèle est cohérent avec l'évolution de la population en Belgique et en France jusqu'en 1833. C'est dans la publication de 1845 qu'il nomme cette courbe « logistique » sans donner l'explication de ce terme. Utilisant les données fournies sur la population de la Belgique en 1815, 1830 et 1845, il détermine les trois paramètres de la fonction logistique qui correspondrait à cette évolution de la population et estime à 6,6 millions la population seuil en Belgique[2] (population en 2006 : 10,5 millions).

La courbe logistique, utilisée dans l'étude des populations est redécouverte en 1920 par les statisticiens et biologistes Raymond Pearl (1879 - 1940) et Lowell Jacob Reed (1886-1966) qui ne créditent Verhulst de la paternité de la découverte qu'en 1922. Le terme exact de « logistique », tombé dans l'oubli ne réapparait qu'en 1924 dans une correspondance entre George Yule et Reed. C'est à cette époque que le nom devient officiel.

On trouve trace de l'utilisation de la courbe logistique en chimie dans un inventaire (1929) de Reed et Joseph Berkson (1899 - 1982) sur les utilisations possibles de la courbe logistique. C'est Berkson qui défendra l'idée d'ajuster certaines courbes par une fonction logistique (modèle logit) plutôt que par la fonction de répartition de la loi de Gauss (modèle probit).

Résolution de l'équation différentielle de Verhulst[modifier | modifier le code]

Solutions de l'équation différentielle y'=1,5y(1-y/4) pour les conditions initiales
y0=0,5, puis 1, puis 2, puis 3, puis 5, puis 6

Dans son modèle de Verhulst, Verhulst cherche les fonctions f définies et positives sur [0 ; + \infty[ vérifiant les deux conditions

  • y(0) = y_0
  •  y'=ry\left(1-\frac yK\right) \quad (1) avec r > 0 et K > 0

Le changement de variable  z= \frac 1y dans (1) , valable pour y > 0, conduit à l'équation différentielle

 z'=-r\left(z-\frac 1K\right)

dont les solutions sont les fonctions g définies par

 g(t) = \lambda e^{-rt} + \dfrac 1K

La fonction f doit donc vérifier

 f(t) = \frac{1}{g(t)}= K \frac{1}{1+\lambda K e^{-rt}}

La condition initiale y(0)=y_0 conduit à l'unique solution

 f(t) =  K \frac{1}{1+\left(\frac {K}{y_0} - 1\right) e^{-rt}}

Il est aisé de vérifier que cette fonction est bien définie et positive sur [0 + \infty[. En effet,

 1+\left(\frac {K}{y_0} - 1\right) e^{-rt} = e^{-rt}\left(e^{rt} +\frac {K}{y_0} - 1 \right)
Comparaion entre le modèle de Malthus y'=1.5y et le modèle de Verhulst : y'=1.5y(1-y/6)

Or pour r> 0 et t ≥ 0, e^{rt}\ge 1 donc  e^{rt} +\frac {K}{y_0} - 1 \ge \frac {K}{y_0} > 0.

Il est aussi aisé de vérifier qu'elle remplit bien les deux conditions énoncées.

Selon les valeurs de y_0 , la fonction est soit constante (pour y_0=K), soit croissante (pour y_0 < K), soit décroissante (pour y_0>K)

Pour  y_0 \ll K, la courbe logistique est quasi-tangente en 0 à la courbe exponentielle solution du modèle de Malthus : y'=ry. Les deux modèles sont donc équivalents pour des petites valeurs de t mais les courbes divergent pour les grandes valeurs de t.

Propriétés des courbes logistiques[modifier | modifier le code]

Pour a > 0[modifier | modifier le code]

Courbe d'équation y = \frac{6}{1+4e^{-0.8x}} et son centre de symétrie

La courbe logistique

 y = K\frac{1}{1+ae^{-rx}} est l'image par une transformation affine de la sigmoïde

En effet, en posant

  • Y = \frac yK
  •  X=r\left(x-\frac{\ln(a)}{r}\right)

l'équation devient

Y=\frac{1}{1+e^{-X}}\quad

Cette courbe ayant pour asymptotes les droites d'équation Y = 0 et Y = 1 et pour centre de symétrie le point d'inflexion I(0;1/2), la courbe logistique a pour asymptote les droites d'équation y = 0 et y = K et pour centre de symétrie le point d'inflexion J\left(\frac{\ln(a)}{r}; K/2\right).

Pour a < 0[modifier | modifier le code]

Courbe d'équation y = \frac{2}{1-4e^{-0.8x}} et son centre de symétrie

La courbe logistique

 y = K\frac{1}{1+ae^{-rx}} est l'image par une transformation affine de la courbe d'équation
Y=\frac{1}{1-e^{-X}}\quad (2)

En effet, il suffit de poser

  • Y = \frac yK
  •  X=r\left(x-\frac{\ln(|a|)}{r}\right)

La courbe (2) ayant pour asymptotes les droites d'équation Y = 0, Y = 1 et X = 0 et pour centre de symétrie le point I(0;1/2), la courbe logistique a pour asymptotes les droites d'équation y = 0, y = K et x=\frac{\ln(|a|)}{r} et pour centre de symétrie le point  J\left(\frac{\ln(|a|)}{r}; K/2\right)

Ajustement logistique[modifier | modifier le code]

De nombreuses situations (réaction chimiques, études de population) conduisant à des représentations en forme de S, il est intéressant de chercher les paramètres a > 0 et r > 0 permettant d'ajuster le phénomène par une fonction f de la forme

f(t) = K\frac{1}{1+ae^{-rt}}

(le paramètre K se détermine par l'étude de l'asymptote)

L'application de la fonction réciproque Logit

 \operatorname{logit}(y) = \ln\left(\frac{y}{1-y}\right)

à l'expression \frac{f(t)}{K}= \frac{1}{1+ae^{-rt}} permet de procéder à une ajustement affine

\operatorname{logit}\left(\frac{1}{1+ae^{-rt}}\right) = \ln\left(\frac{1}{1+ae^{-rt}}\frac{1}{1-\frac{1}{1+ae^{-rt}}}\right) = \ln\left(\frac{1}{ae^{-rt}}\right)=rt-\ln(a)

L'ajustement affine de \mathrm{logit}(y) permet alors de déterminer r et \ln(a) et d'en déduire a.

Autres fonctions logistiques[modifier | modifier le code]

On peut chercher à élargir le champ des fonctions logistiques à des fonctions dont les asymptotes horizontales sont quelconques. On prend alors pour fonction logistique des fonctions à quatre paramètres a, m, n, et \tau, dont l'expression est

 f(t) = a\frac{1 + m e^{-t/\tau}}{1 + n e^{-t/\tau}} \!

La transformation de la fonction sous la forme

 f(t) = am/n + a(1-m/n)\frac{1}{1+ne^{-t/\tau}}

prouve que la courbe obtenue est seulement l'image par une translation d'une courbe logistique du type précédent. Ses asymptotes ont pour équation  y=\frac{am}{n} et y=a\,. Son centre de symétrie a pour coordonnées \left(\frac{\ln(a)}{r};\frac{a(1+m/n)}{2}\right).

Pour obtenir une courbe en S déformée non symétrique, on fait parfois appel à des fonctions logistiques à 5 paramètres dans laquelle peuvent varier les deux asymptotes horizontales, le point d'inflexion et les incurvations avant et après le point d'inflexion[3]

Utilisation en économie: Diffusion des innovations[modifier | modifier le code]

La fonction logistique peut être utilisée pour illustrer l'état d'avancement de la diffusion d'une innovation durant son cycle de vie. Historiquement, lorsque de nouveaux produits sont introduits, une intense phase de recherche et de développement permet une amélioration spectaculaire de la qualité et une réduction des coûts. Cela conduit à une période de croissance rapide de l'industrie. Certains des plus célèbres exemples d'un tel développement sont : les chemins de fer, les ampoules à incandescence, l'électrification, la Ford modèle T, le transport aérien et les ordinateurs.

Par la suite, cette amélioration spectaculaire et les possibilités de réduction des coûts s'épuisent, le produit ou le procédé est largement utilisé avec de rares nouveaux clients potentiels, et les marchés deviennent saturés.

L'analyse logistique a été utilisées dans les publications de plusieurs chercheurs de l'Institut international pour l'analyse des systèmes appliqués (IIASA). Ces documents traitent de la diffusion de diverses innovations, des infrastructures et des substitutions de sources d'énergie et du rôle du travail dans l'économie ainsi que du cycle de longue durée. Les cycles économiques de longue durée ont été étudiés par Robert Ayres (1989)[4]. Cesare Marchetti a publié sur les cycles de longues durées et sur la diffusion des innovations[5],[6]. Le livre de Arnulf Grübler (1990) donne un compte rendu détaillé de la diffusion des infrastructures, y compris canaux, chemins de fer, autoroutes et compagnies aériennes, montrant que leur diffusion a suivi des courbes en forme logistique[7].

Carlota Perez a utilisé une courbe logistique pour illustrer le cycle économique de longue durée avec les étiquettes suivantes: irruption pour le début d'une ère technologique, frénesie pour la phase ascendante, synergie pour le développement rapide et maturité pour l'achèvement[8]

Annexes[modifier | modifier le code]

Liens internes[modifier | modifier le code]

Sources[modifier | modifier le code]

  • Pierre-François Verhulst, « Notice sur la loi que la population poursuit dans son accroissement », Correspondance mathématique et physique, no 10,‎ 1838, p. 113-121 (lire en ligne [PDF])
  • Pierre-François Verhulst, « Recherches mathématiques sur la loi d'accroissement de la population », Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Bruxelles, no 18,‎ 1845, p. 1-42 (lire en ligne [PDF])
  • Pierre-François Verhulst, « Deuxième mémoire sur la loi d'accroissement de la population », Mémoires de l'Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique, no 20,‎ 1847, p. 1-32 (lire en ligne [PDF])
  • Bernard Delmas, « Pierre-François Verhulst et la loi logistique de la population », Mathématiques & sciences humaines, no 167,‎ automne 2004, p. 51-81 (ISSN 0987 6936, lire en ligne [PDF]).
  • J-S Cramer, The origins and development of the logit model Pour la partie historique

Notes et références[modifier | modifier le code]

  1. (en) Why logistic ogive and not autocatalytic curve?
  2. Pierre-François Verhulst, « Recherches mathématiques sur la loi d'accroissement de la population », Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Bruxelles, no 18,‎ 1845, p. 1-42 (lire en ligne [PDF]), page 38.
  3. (en) Exemple de fonction logistique à 5 paramètres
  4. (en) Robert Ayres, Technological Transformations and Long Waves,‎ 1989 (lire en ligne)
  5. (en) Cesare Marchetti, Pervasive Long Waves: Is Society Cyclotymic,‎ 1996 (lire en ligne)
  6. (en) Cesare Marchetti, Kondratiev Revisited-After One Cycle,‎ 1988 (lire en ligne)
  7. (en) Arnulf Grübler, The Rise and Fall of Infrastructures: Dynamics of Evolution and Technological Change in Transport, Heidelberg and New York, Physica-Verlag,‎ 1990 (lire en ligne)
  8. Carlota Perez, Technological Revolutions and Financial Capital: The Dynamics of Bubbles and Golden Ages, UK, Edward Elgar Publishing Limited,‎ 2002 (ISBN 1-84376-331-1)