Fonction localement intégrable

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

En mathématiques, plus précisément en théorie de l'intégration, une fonction à valeurs complexes définie sur un ouvert Ω de ℝn est dite localement intégrable si sa restriction à tout compact de Ω est intégrable pour la mesure de Lebesgue. L'espace vectoriel de ces fonctions est noté ℒ1loc(Ω) et son quotient par le sous-espace des fonctions nulles presque partout est noté L1loc(Ω).

Définitions équivalentes[modifier | modifier le code]

Pour toute fonction f : Ω → ℂ, les propriétés suivantes sont équivalentes :

  • f est localement intégrable (au sens ci-dessus) ;
  • f est Lebesgue-mesurable et pour tout compact K de Ω,
    \int_K|f|~{\rm d}\lambda_n<+\infty ;
  • pour toute fonction test φ sur Ω (c'est-à-dire toute fonction C à support compact de Ω dans ℂ), fφ est Lebesgue-intégrable ;
  • f est Lebesgue-mesurable et pour toute fonction test φ sur Ω,
    \int_{\Omega}|f\varphi|~{\rm d}\lambda_n<+\infty.

Exemples[modifier | modifier le code]

  • Toute fonction intégrable est localement intégrable.
  • Plus généralement, L1loc(Ω) contient Lp(Ω) pour tout p ∈ [1, +∞].
  • Toute fonction mesurable localement bornée (en particulier toute fonction continue) est localement intégrable.
  • La fonction f définie (presque partout) par f(x) = 1/x — qui appartient donc à L1loc(ℝ*) — n'appartient pas à L1loc(ℝ).

Propriétés[modifier | modifier le code]

Articles connexes[modifier | modifier le code]