Espace normal

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Un espace topologique séparé X est dit normal lorsque, pour tous fermés disjoints E et F de X, il existe des ouverts disjoints U et V tels que U contienne E et V, F.

En mathématiques, un espace normal est un espace topologique vérifiant un axiome de séparation plus fort que la condition usuelle d'être un espace séparé. Cette définition est à la base de résultats comme le lemme d'Urysohn ou le théorème de prolongement de Tietze. Tout espace métrisable est normal.

Définition[modifier | modifier le code]

Soit X un espace topologique. On dit que X est normal[1] s'il est séparé et s'il vérifie de plus l'axiome de séparation T4[2] :

pour tous fermés disjoints F et G, il existe deux ouverts disjoints U et V tels que F soit inclus dans U et G dans V.

Exemples[modifier | modifier le code]

Propriétés[modifier | modifier le code]

Propriétés élémentaires[modifier | modifier le code]

  • Si deux espaces topologiques sont homéomorphes et si l'un d'eux est normal, l'autre l'est aussi[5].
    En effet la propriété d'être normal est, comme tous les axiomes de séparation, formulée de façon à être invariante par homéomorphisme.
  • Tout fermé d'un espace normal est normal (pour la topologie induite).

Conditions nécessaires et suffisantes[modifier | modifier le code]

Il existe de nombreuses caractérisations de la propriété T4 (donc de la normalité, quand impose de plus à l'espace d'être séparé). Ces caractérisations sont à l'origine des propriétés donnant de la valeur à la définition. Citons-en trois, dont la première n'est qu'une reformulation élémentaire mais les deux autres sont bien plus techniques :

  • Un espace topologique X est T4 si, et seulement si, pour tout fermé F de X et tout ouvert O contenant F, il existe un ouvert U contenant F tel que l'adhérence de U soit incluse dans O[6] :
F\subset U\subset \overline{U} \subset O.
  • Lemme d'Urysohn[7] : Un espace topologique X est T4 si, et seulement si, pour tous fermés disjoints F et G de X, il existe une fonction continue qui vaut 0 sur F et 1 sur G.
  • Théorème de prolongement de Tietze : Pour un espace topologique X, les trois propositions suivantes sont équivalentes :
    • X est T4 ;
    • pour tout fermé F de X et toute application continue f de F dans , il existe une application continue de X dans ℝ qui prolonge f ;
    • pour tout fermé F de X et toute application continue f de F dans un segment réel [–M, M], il existe une application continue de X dans [–M, M] qui prolonge f.
  • Un espace X est T4 (si et) seulement si tout recouvrement ouvert localement fini de X possède une partition de l'unité subordonnée.

Condition suffisante de non-normalité[modifier | modifier le code]

Lemme de Jones (de)[8],[9] — Pour qu'un espace séparable ne soit pas normal, il suffit qu'il contienne un sous-espace fermé discret ayant la puissance du continu.

Par cet argument, le plan de Sorgenfrey et le plan de Moore ne sont pas normaux.

La non-normalité du plan de Sorgenfrey prouve que le produit de deux espaces normaux n'est pas toujours normal (voir aussi : Droite de Michael).

Histoire[modifier | modifier le code]

Cette notion provient du mathématicien Heinrich Tietze et date de 1923[10]. Nicolas Bourbaki précise à son sujet : « Les travaux récents ont mis en évidence que, dans ce genre de question (topologie algébrique), la notion d'espace normal est peu maniable, parce qu'elle offre trop de possibilités de pathologie ; on doit le plus souvent lui substituer la notion plus restrictive d'espace paracompact, introduite en 1944 par Jean Dieudonné[10]. »

Notes et références[modifier | modifier le code]

  1. Serge Lang, Analyse Réelle, Paris, InterEditions,‎ 1977 (ISBN 978-2-72960059-4).
  2. Il suffit pour cela qu'il vérifie T1 et T4.
  3. F. Paulin Topologie, analyse et calcul différentiel, École Normale supérieure (2008-2009), p. 36.
  4. Lang 1977, p. 30.
  5. (en) James Dugundji (en), Topology, Wm. C. Brown Publishers,‎ 1989 (ISBN 978-0-69706889-7), p. 144.
  6. Lang 1977, p. 36.
  7. Lang 1977, p. 37.
  8. (en) F. Burton Jones (en), « Concerning normal and completely normal spaces », Bull. Amer. Math. Soc., vol. 43, no 10,‎ 1937, p. 671-677 (lire en ligne).
  9. (en) Peter J. Nyikos, « A history of the normal Moore space problem », dans C. E. Aull et R. Lowen, Handbook of the History of General Topology, vol. 3, Springer,‎ 2001 (ISBN 978-0-79236970-7, lire en ligne), p. 1179-1212 : p. 1183.
  10. a et b Nicolas Bourbaki, Éléments d'histoire des mathématiques [détail des éditions], éd. 2006, p. 205.

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Ouvrage[modifier | modifier le code]

(en) Michael Henle, A Combinatorial Introduction to Topology, Dover Publications,‎ 1994 (ISBN 978-0-48667966-2, lire en ligne)

Lien externe[modifier | modifier le code]

(en) P. S. Aleksandrov, « Normal space », dans Michiel Hazewinkel, Encyclopædia of Mathematics, Springer,‎ 2002 (ISBN 978-1556080104, lire en ligne)