Espace d'échelle

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

La théorie de l' Espace d'échelle ( « Scale-space » ) est un cadre pour la représentation du signal développé par les communautés de la vision artificielle, du traitement de l'image, et du traitement du signal. C'est une théorie formelle pour manipuler les structures de l'image à différentes échelles, en représentant une image comme une famille d'images lissées à un paramètre, la représentation d'espace échelle, paramétrée par la taille d'un noyau lissant utilisé pour supprimer les structures dans les petites échelles[1],[2],[3],[4],[5],[6],[7].

Définition[modifier | modifier le code]

Soit[8] f : \R^n \rightarrow \R un signal. On appelle représentation d'une fonction f en espace d'échelles linéaire la fonction L telle que :

L : \R^n  \times  \R \rightarrow \R
L(x,0) = f(x) \forall x  \in \R^n
L(x,t) = g_{\sqrt{t}} * f(x) \forall x  \in \R^n, \forall t  \in \R^+

-  g_{\sqrt{t}}(x) = \frac{1}{(2 \pi t)^\frac{n}{2}} e ^\frac{-x^Tx}{2t}
- * est l'opérateur de convolution : f * g (x) =   \int\limits_{y\in\R^n} g(y_1,y_2,...,y_n) f(y_1-x_1,y_2-x_2,...,y_n-x_n) \, \mathrm dy_1..dy_n
- x = (x_1,x_2,...,x_n) et  y = (y_1,y_2,...,y_n)

\sqrt{t} est le facteur d'échelle, (x,\sqrt{t}) est l'espace d'échelle.

Voir aussi[modifier | modifier le code]

Notes[modifier | modifier le code]

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Scale space » (voir la liste des auteurs)

Liens internes[modifier | modifier le code]

Liens externes[modifier | modifier le code]

Références[modifier | modifier le code]

  1. Witkin, A. P. "Scale-space filtering", Proc. 8th Int. Joint Conf. Art. Intell., Karlsruhe, Germany,1019–1022, 1983.
  2. Koenderink, Jan "The structure of images", Biological Cybernetics, 50:363–370, 1984
  3. Lindeberg, T., Scale-Space Theory in Computer Vision, Kluwer Academic Publishers, 1994, ISBN 0-7923-9418-6
  4. (en) T. Lindeberg, « Scale-space theory: A basic tool for analysing structures at different scales », Journal of Applied Statistics (Supplement on Advances in Applied Statistics: Statistics and Images: 2), vol. 21, no 2,‎ 1994, p. 224–270 (DOI 10.1080/757582976, lire en ligne)
  5. Florack, Luc, Image Structure, Kluwer Academic Publishers, 1997.
  6. Sporring, Jon et al. (Eds), Gaussian Scale-Space Theory, Kluwer Academic Publishers, 1997.
  7. Romeny, Bart ter Haar, Front-End Vision and Multi-Scale Image Analysis, Kluwer Academic Publishers, 2003.
  8. Définition tirée de : Dominique Béréziat, Analyse Multiéchelles et Ondelettes Chapitre 1 : espaces d'échelles continus