Erreur relative

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

L'erreur absolue est : \delta\alpha = \text{valeur approchée - valeur réelle}

L'erreur relative est : \delta\alpha_r = \frac{\text{valeur approchée - valeur réelle}}{|\text{valeur réelle}|}

ou

\delta\alpha_r = \frac{\delta\alpha}{|\text{valeur réelle}|}

Le résultat donne un rapport, par exemple 0,14. Cela signifierait que l'erreur relative est de +0,14 , soit 14 %.

Remarquons que dans cette définition, il n'y a pas de valeur absolue au numérateur, de sorte qu'il s'agit d'une erreur relative algébrique : si elle est positive, c'est que la valeur approchée est supérieure à la valeur exacte (on parle d'erreur par excès), et si elle est négative, c'est qu'elle est inférieure (erreur par défaut).

Donc la valeur approchée est obtenu par : \text{(valeur réelle)} \times (1 + \delta\alpha_r).

Voir aussi[modifier | modifier le code]