Ensemble de Cantor

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

En mathématiques, l'ensemble de Cantor (ou ensemble triadique de Cantor, ou poussière de Cantor) est un sous-ensemble remarquable de la droite réelle construit par le mathématicien allemand Georg Cantor[1].

Il s'agit d'un sous-ensemble fermé de l'intervalle unité [0,1], d'intérieur vide. Il sert d'exemple pour montrer qu'il existe des ensembles infinis non dénombrables mais négligeables au sens de la mesure de Lebesgue. C'est aussi le premier exemple de fractale (bien que le terme ne soit apparu qu'un siècle plus tard), et il possède une dimension non entière.

Il admet enfin une interprétation en termes de développement des réels en base 3. Pour cette raison, il est souvent noté K_3.

On le construit de manière itérative à partir du segment [0,1] en enlevant le tiers central ; puis on réitère l'opération sur les deux segments restants, et ainsi de suite. On peut voir les six premières itérations du procédé sur le schéma suivant :

Six premières itérations de la construction de l'ensemble de Cantor

Construction[modifier | modifier le code]

Construction itérative[modifier | modifier le code]

On dénote par \mathcal{T} l'opérateur « enlever le tiers central » :

 \mathcal{T} : I \rightarrow I_0 \cup I_1 \ ; \ [a,b] \mapsto \left[a,a+\frac{b-a}{3}\right] \cup \left[b- \frac{b-a}{3},b\right].

On note A_0 = [0,1] et on définit par récurrence une suite de parties de [0,1] par la relation :

\forall n \in \N,\ A_{n+1} = \mathcal{T}(A_n).

On a :

A_1 = \left[0,\frac{1}{3}\right] \cup \left[\frac{2}{3},1\right];
A_2 = \left[0,\frac{1}{9}\right] \cup \left[\frac{2}{9},\frac{1}{3}\right] \cup \left[\frac{2}{3},\frac{7}{9}\right] \cup \left[\frac{8}{9},1\right];

A_3 = \left[0,\frac{1}{27}\right] \cup \left[\frac{2}{27},\frac{1}{9}\right] \cup \left[\frac{2}{9},\frac{7}{27}\right] \cup \left[\frac{8}{27},\frac{1}{3}\right] \cup \left[\frac{2}{3},\frac{19}{27}\right] \cup \left[\frac{20}{27},\frac{7}{9}\right] \cup \left[\frac{8}{9},\frac{25}{27}\right] \cup \left[\frac{26}{27},1\right].

Alors l'ensemble de Cantor K_3 est la «  limite »[2] de A_n quand n tend vers +\infty  :

K_3 = \bigcap_{n \in \N} A_n.

Écriture en base 3[modifier | modifier le code]

On peut aussi définir[3] l'ensemble de Cantor via l'écriture en base 3. Tout réel x \in [0,1] s'écrit de manière :

x = \sum_{n=1}^{\infty} \frac{x_n}{3^n};

avec x_n \in \{ 0,1,2\}. On écrit alors

x = 0,x_1 x_2 x_3 x_4 x_5 \ldots

Cette écriture est unique à ceci près : on peut remplacer 1000000\ldots par 0222222\ldots (et 2000000\ldots par 1222222\ldots ) à la fin d'une écriture. Si on choisit de faire cette transformation on peut alors définir K_3 par :

L'ensemble de Cantor est formé des réels de [0,1] ayant une écriture en base 3 ne contenant que des 0 et des 2.

Ou plus formellement :

K_3 = \left\{ \sum_{n=1}^{\infty} \frac{x_n}{3^n} \ | \,x_n \in \{ 0,2 \} \right\}.

Par exemple le réel 1/3 est dans cet ensemble, puisqu'il admet les deux écritures 0,1000… et 0,02222… en base 3. Le réel 2/3 également (0,2000… ou 0,12222…). On peut remarquer que parmi les nombres admettant un développement propre et un développement impropre, il n'en existe aucun dont les deux écritures vérifient la propriété demandée.

Propriétés[modifier | modifier le code]

Mesure[modifier | modifier le code]

L'ensemble de Cantor est de mesure nulle, c'est-à-dire négligeable au sens de la mesure de Lebesgue.

En effet en notant \ell la mesure de Lebesgue sur \R, on a :

  • \ell  \left( [0,1] \right) = 1;
  • pour une réunion A_n d'intervalles : \ell \left( \mathcal{T}(A_n) \right) = \ell(A_{n+1})   = \frac{2}{3} \ell (A_n)  ;

\mathcal{T} est l'opérateur « ablation du tiers central » (voir premier paragraphe).

On en déduit que pour les étapes de la construction itérative ci-dessus :

\forall n \in \N ,\ \ell \left( A_n \right) = \left( \frac{2}{3} \right)^n.

Et comme l'ensemble de Cantor est inclus dans tous les A_n : \ell \left( K \right) = 0.

L'ensemble de Cantor est donc « petit » au sens de la mesure de Lebesgue.

Non-dénombrabilité[modifier | modifier le code]

Cependant l'ensemble de Cantor n'est pas dénombrable. Plus précisément, il a la puissance du continu, c'est-à-dire qu'il est équipotent à \mathcal{P}(\N), l'ensemble des parties de l'ensemble \N des entiers naturels (or \mathcal{P}(\N), d'ailleurs équipotent à \R, n'est pas dénombrable, d'après le théorème de Cantor).

On peut en effet, grâce à l'écriture en base 3 ci-dessus, définir une bijection de \mathcal{P}(\N) dans K_3, en associant à toute partie A de \N le réel \sum_{k=0}^\infty\frac{2\times 1_A(k)}{3^{k+1}}, où 1_A désigne la fonction caractéristique de la partie A.

Ainsi l'ensemble de Cantor est « grand » au sens de la théorie des ensembles.

Propriétés topologiques[modifier | modifier le code]

  • Enfin, tout espace métrique compact est l'image de l'ensemble de Cantor par une application continue. Cette propriété a des répercussions importantes en analyse fonctionnelle. En outre, tout espace métrique compact totalement discontinu sans point isolé est homéomorphe à l'ensemble de Cantor ; les sous-espaces du plan ou de l'espace usuel ayant cette propriété sont souvent appelés des poussières de Cantor.

Auto-similarité[modifier | modifier le code]

L'image de l'ensemble de Cantor par l'homothétie h de centre 0 et de rapport 1/3 est elle-même une partie de l'ensemble de Cantor. Plus précisément

K_3 = h \left( K_3 \right) \cup \left( h \left( K_3 \right) + \frac{2}{3} \right).

Ainsi, K_3 est la réunion disjointe de deux parties qui lui sont homothétiques. C'est une manifestation de ce qu'on appelle l'auto-similarité, qui est l'une des propriétés de base des fractales.

Dimension[modifier | modifier le code]

En conséquence de ce qui précède, on peut calculer la dimension de Minkowski ; elle vaut log(2)/log(3)\simeq 0,630929754 , nombre réel (d'ailleurs irrationnel, et même transcendant[4]). On parle parfois de dimension fractionnaire car elle n'est pas entière, même s'il ne s'agit pas davantage d'un nombre rationnel. Dans cette formule, peu importe qu'on interprète log comme logarithme naturel ou logarithme décimal. On peut aussi écrire que la dimension vaut log3(2) (logarithme de 2 en base 3).

Cette valeur est également la dimension de Hausdorff de l'ensemble. On peut donc dire que l'ensemble de Cantor est de dimension log(2)/log(3) sans se soucier de la dimension utilisée.

Variantes[modifier | modifier le code]

Le carré de Cantor
Le cube de Cantor

Soit s un nombre strictement compris entre 0 et 1. Si, au lieu de couper chaque intervalle en trois et d'enlever l'intervalle central, on enlève à la n-ème étape un intervalle de longueur s/3^n au centre de chaque intervalle de la génération précédente, on obtient un ensemble de Cantor dont la mesure de Lebesgue est 1 - s. Cela permet d'obtenir un compact d'intérieur vide de mesure aussi proche de 1 que l'on veut. Le cas s = 1 redonne l'ensemble de Cantor usuel. Un procédé comparable est utilisé dans l'ensemble de Smith-Volterra-Cantor.

Une autre version de l'ensemble de Cantor est le carré de Cantor. Il est construit sur le même principe général, mais basé sur un carré : on considère un carré que l'on découpe en 9 carrés de même taille, et on supprime tous les carrés n'étant pas dans un coin du carré de départ. L'ensemble est construit de façon itérative en répétant cette action sur les nouveaux carrés. Ce n'est rien d'autre que le produit cartésien K_3 \times K_3 d'un ensemble de Cantor par lui-même.

La même construction en dimension 3 conduit au cube de Cantor, égal au produit cartésien K_3 \times K_3 \times K_3 (à ne pas confondre avec l'éponge de Menger).

Notes et références[modifier | modifier le code]

  1. G. Cantor,De la puissance des ensembles parfaits de points, Acta Math., 4 (1884) 381-392
  2. Il s'agit d'ailleurs d'une véritable limite, pour la topologie de la distance de Hausdorff.
  3. Cf. théorème 52 du mémoire « Autosimilarité, ensemble triadique de Cantor et dimension de Hausdorff » - Louis Ioos et Sébastien Peronno
  4. En effet, si d=log(2)/log(3) était rationnel et valait p/q, on aurait \scriptstyle 2^q= 3^p, absurde ; de même, si d était algébrique (irrationnel), on aurait \scriptstyle 2= 3^d, contredisant le théorème de Gelfond-Schneider.

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :