Diode Zener

Un article de Wikipédia, l'encyclopédie libre.
Ceci est une version archivée de cette page, en date du 26 mars 2014 à 22:38 et modifiée en dernier par Daniel*D (discuter | contributions). Elle peut contenir des erreurs, des inexactitudes ou des contenus vandalisés non présents dans la version actuelle.
Symbole de la diode Zener
Diode Zener de puissance

Une diode Zener est un assemblage de deux semi-conducteurs dont les propriétés électriques ont été découvertes par le physicien américain Clarence Zener. Contrairement à une diode conventionnelle qui ne laisse passer le courant électrique que dans un seul sens, le sens direct, les diodes Zener sont conçues de façon à laisser également passer le courant inverse, mais ceci uniquement si la tension à ses bornes est plus élevée que le seuil de l'effet d'avalanche. Ce seuil en tension inverse (tension Zener) est de valeur déterminée pouvant aller de 1,2 V à plusieurs centaines de volts[1]. Certaines diodes Zener comportent une troisième broche qui permet de régler cet effet d'avalanche.

Principe

Caractéristique de la diode Zener : courbe de I(Ud).
Caractéristique idéale de la diode Zener : courbe de I(Ud).

Une diode est le contact de deux types de semi-conducteurs, l'un de type P et l'autre de type N. Soumise à une tension inverse, elle conduit un courant inverse très faible, que l'on considère nul dans la pratique. L'énergie des bandes de valence des atomes dans le matériaux de type P ont souvent un recoupement avec les bandes de conductions du matériau de type N. Si la jonction P-N d'une diode est fortement dopée, la zone de charge d'espace est très mince et des électrons peuvent traverser la jonction dans la bande d'énergie commune par l'effet tunnel. Ainsi, la diode soumise à une tension inverse peut conduire un courant par l'effet tunnel[2]. La tension d'apparition de l'effet tunnel est très faible si le dopage est très grand. Cette tension dépend du niveau de dopage et de la tension inverse.

D'autre part, lorsque la tension inverse devient suffisamment grande, le champ électrique interne à la jonction P-N est tel que certaines charges électriques minoritaires très énergétiques génèrent de nouvelles charges électriques par processus d'ionisation par chocs[2]. Il y a augmentation du courant inverse par effet d'avalanche, et destruction de la diode si cet effet n'est pas limité par une résistance mise en série. La diode peut ainsi laisser passer un courant important en inverse.

Ces deux mécanismes de conduction en tension inverse peuvent coexister pour des valeurs intermédiaires de tension Uz. Par exemple, la diode silicium de tension Uz de 5,6 volts est souvent utilisée car l'effet tunnel et le processus d'ionisation par chocs ont une dépendance contraire avec la température. Ainsi dans ce cas, la tension Uz reste constante à 5,6 V pour une gamme de température assez étendue, servant ainsi de référence de tension.

Zone d'utilisation de la diode Zener.

Utilisation

Symbole de la diode Zener et formes courantes du composant. Le courant inverse est indiqué sur le schéma.

On l'utilise comme référence de tension dans les alimentations stabilisées par exemple. Elle permet également la protection en surtension, toutefois la diode Transil lui est largement supérieure en puissance absorbable.

Les diodes Zener sont fréquemment utilisées pour réguler la tension dans un circuit. Lorsqu'on la connecte en inverse en parallèle avec une source de tension variable, une diode Zener devient conductrice lorsque la tension atteint la tension d'avalanche de la diode. Elle maintient ensuite la tension à cette valeur.

Dans ce circuit, la résistance R est responsable de la chute de tension entre UIN et UOUT. La valeur de R doit satisfaire deux conditions :

  1. R doit être suffisamment petite pour que le courant qui passe dans D la maintienne en mode d'avalanche. La valeur de ce courant est donnée dans la data sheet de D. Par exemple, la diode Zener classique BZX79C5V6[3] (5,6 V / 0,5 W) possède un courant inverse recommandé de 5 mA. Si le courant qui traverse D n'est pas suffisant, alors UOUT n'est pas régulé, et vaut moins que la tension d'avalanche (ce comportement est différent de celui des tubes régulateurs de tension pour lesquels la tension de sortie serait supérieure à la tension nominale, et pourrait atteindre UIN). Lors du calcul de R, on doit tenir compte du courant qui circule dans la charge externe connectée sur UOUT (qui ne figure pas dans ce diagramme).
  2. R doit être assez grande pour que le courant qui traverse D ne la détruise pas. En notant ID le courant dans D, la tension d'avalanche VZ et la puissance absorbable maximum Pmax, alors on doit avoir .

Une diode Zener est un régulateur shunt (shunt désigne la connexion en parallèle). En effet, une partie du courant qui traverse la résistance est déviée dans la diode Zener, et le reste traverse la charge. Ainsi on contrôle la tension que voit la charge en faisant passer une partie du courant issu de la source dans la diode au lieu de la charge.

Notes et références

  1. SMAJ530 & SMAJ550 datasheet, Vishay
  2. a et b « Les diodes Zener », Les composantes électroniques, sur Technique électronique, (consulté le ).
  3. BZX79C5V6 data sheet, Fairchild Semiconductor

Liens externes