Constante cosmologique

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Carte du fond diffus cosmologique du ciel en entier

La constante cosmologique est un paramètre ajouté par Einstein en février 1917 à ses équations de la relativité générale (1915), dans le but de rendre sa théorie compatible avec l'idée qu'il y avait alors un Univers statique. Après la découverte en 1929 du décalage vers le rouge par Edwin Hubble impliquant un Univers en expansion, Albert Einstein revient sur l'introduction de la constante cosmologique, la qualifiant de « plus grande bêtise de sa vie. » (d'après G. Gamow, dans son autobiographie publiée en 1970). Néanmoins des découvertes récentes durant les années 1990, traitant des problèmes tels que l'énergie du vide, la théorie quantique des champs ou l'accélération de l'expansion de l'Univers ont provoqué un regain d'intérêt pour ce paramètre, qui est par ailleurs compatible avec l'ensemble de la théorie de la relativité générale.

Densité d'énergie du vide[modifier | modifier le code]

La constante cosmologique correspond à la densité moyenne d'énergie du vide sur des échelles cosmologiques. L'ordre de grandeur de cette constante est totalement inconnu.

La théorie quantique des champs possède des fluctuations du vide qui peuvent s'interpréter comme un terme de constante cosmologique, et dont l'ordre de grandeur estimé est largement incompatible avec les mesures actuelles par un facteur 10120[1]

Description mathématique[modifier | modifier le code]

Cet article suit les conventions de signe classiques de MTW [2]

Cet article adopte également la convention de sommation d'Einstein.

On considère un espace-temps caractérisé par le tenseur métrique g_{\mu\nu} de signature (-, +, +, +). On note R_{\mu\nu} le tenseur de Ricci associé, et R = g^{\mu \nu} R_{\mu\nu} la courbure scalaire.

Introduction[modifier | modifier le code]

La constante cosmologique est le terme mathématique noté \Lambda qui apparaît dans l'équation d'Einstein, à partir de laquelle tous les modèles cosmologiques sont dérivés :

R_{\mu\nu} \ - \ \frac{1}{2} \, R \, g_{\mu\nu} \ - \ \Lambda \, 
g_{\mu\nu} \ = \ \frac{8\pi G}{c^4} \ T_{\mu\nu}

G la constante gravitationnelle (environ 6,67384 × 10-11 m3 kg-1 s-2), c la célérité de la lumière (exactement 299 792 458 m-s-1 par définition), et T_{\mu\nu} le tenseur énergie-impulsion.

Mathématiquement, le membre de gauche de cette équation, qui représente la géométrie de l'espace-temps, est la forme la plus générale d'un tenseur covariant dont la dérivée covariante soit identiquement nulle. En effet, lorsque la connexion est associée à la métrique, on a :

\nabla^{\mu} \, g_{\mu\nu}\ = \ 0

et les identités de Bianchi s'écrivent :

\nabla^{\mu} \, \left[ \, R_{\mu\nu} \ - \ \frac{1}{2} \, R \, g_{\mu\nu} \, \right ] \ = \ 0

On en déduit que le tenseur énergie-impulsion, qui décrit la distribution de matière et énergie dans l'espace temps, est conservé (de façon covariante) :

\nabla^{\mu} \, T_{\mu\nu} \ = \ 0

Interprétation physique[modifier | modifier le code]

Le terme contenant la constante cosmologique peut se placer à droite de l'équation en changeant son signe, et l'égalité reste bien évidemment vérifiée :

R_{\mu\nu} \ - \ \frac{1}{2} \, R \, g_{\mu\nu} \ = \ \frac{8\pi G}{c^4} \ T_{\mu\nu} \ + \ \Lambda \ 
g_{\mu\nu}

Cependant, de ce côté droit, le terme prend une signification différente, puisqu'il est du « côté de l'énergie-impulsion ». On cherche alors une forme d'énergie que le tenseur d'énergie-impulsion décrivant la matière et/ou le rayonnement ordinaires ne contiendrait pas, mais qui serait décrit par le terme de constante cosmologique :

T_{\mu\nu}^{(\Lambda)} \ = \ \frac{c^4 \Lambda}{8\pi G} \ g_{\mu\nu}

Cette expression est celle d'un fluide parfait[3] dont la densité d'énergie volumique serait :

\rho_{\Lambda} \, c^2 \ = \  \frac{c^4 \Lambda}{8\pi G}

c'est-à-dire que sa masse volumique \rho_{\Lambda} vaudrait :

\rho_{\Lambda} \ = \  \frac{c^2 \Lambda}{8\pi G}

et dont la pression serait négative :

P_{\Lambda} \ = \ - \ \rho_{\Lambda} \, c^2 \ = \ - \  \frac{c^4 \Lambda}{8\pi G}

La constante cosmologique contribue ainsi à ce que l'on appelle l'énergie du vide.

Limite newtonienne pour un fluide parfait[modifier | modifier le code]

On se place à la limite des champs faibles :

g_{\mu \nu}(x) \ = \ \eta_{\mu \nu} \ + \ h_{\mu \nu}(x) \quad , \quad | h_{\mu \nu}(x) | \ \ll \ 1

\eta_{\mu \nu} est la métrique plate de Minkowski. Considérons un espace-temps statique, dont la métrique se met sous la forme :

\mathrm ds^2 \ = \ - \ g_{00}(x^k) \ \mathrm dt^2 \ + \  g_{ij}(x^k) \ \mathrm dx^i \ \mathrm dx^j \ , \quad i,j,k \ \in \ \{1,2,3 \}

Supposons cet univers statique rempli d'un fluide parfait au repos dont la masse volumique est \rho et la pression P. À la limite newtonienne, la pression est faible devant la densité d'énergie : P \ll \rho c^2. De plus, la composante temporelle-temporelle de la métrique s'écrit en première approximation :

g_{00} \ \sim \  1 \ - \ \frac{2 V}{c^2}

V est le potentiel newtonien de gravitation (V \ll c^2). L'équation d'Einstein se réduit alors à une équation de Poisson, modifiée par le terme cosmologique :

\Delta \, V \ = \  4 \pi G \ \left[ \ \rho  \ - \ 2 \, \rho_{\Lambda}  \ \right]

Pour un fluide réel, la masse volumique est toujours positive et l'effet gravitationnel est toujours attractif. En revanche, avec une constante cosmologique positive, la masse volumique associée est aussi positive, et la présence du signe « moins » entraîne un effet gravitationnel répulsif.

Le retour de la constante cosmologique[modifier | modifier le code]

Un temps abandonnée, la constante cosmologique a été récemment remise au goût du jour après la découverte de l'accélération de l'expansion de l'Univers. Elle décrirait une force, encore hypothétique, qui accélèrerait l'expansion de l'Univers, appelée énergie sombre (à ne pas confondre avec la matière noire).

En novembre 2005, le USPTO a accordé un brevet (US 6,960,975[4]) ayant pour objet un vaisseau spatial dont la propulsion repose sur la modification locale de la constante cosmologique par la mise en œuvre de matériaux supraconducteurs. Le but est de créer localement des conditions d'antigravité. Notons cependant que la communauté scientifique semble sceptique quant au réalisme d'un tel dispositif en raison de la quantité d'énergie colossale qui serait nécessaire, et semblant reposer sur un concept théorique encore à préciser.

Annexes[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

Références historiques[modifier | modifier le code]

  • Albert Einstein ; Sitzungsberichte der Preussischen Akademie der Wissenschaften, phys. math. Klasse IV (1917) 142.

Revues modernes[modifier | modifier le code]

  • Larry Abbott ; La constante cosmologique, Pour La Science 129 (juillet 1988) 48-56.
  • Lawrence Krauss ; L'antigravité, Pour La Science 257 (mars 1999).
  • Jean-Philippe Uzan ; Que cache la constante cosmologique ?, Pour La Science 326 (décembre 2004).
  • Sean M. Carroll ; The Cosmological Constant, Living Reviews in Relativity 4 (2001) 1. Texte en ligne. ArXiv : astro-ph/0004075.
  • T. Padmanabhan ; Cosmological Constant - the Weight of the Vacuum, Physics Report 380 (2003) 235-320. ArXiv : hep-th/0212290.
  • Philip James Edwin Peebles & Bharat Ratra ; The Cosmological Constant and Dark Energy, Review of Modern Physics 75 (2003) 559-606. ArXiv : astro-ph/0207347.
  • Norbert Straumann ;The history of the cosmological constant problem, conférence donnée au XVIIIth IAP Colloquium : Observational and theoretical results on the accelerating universe, July 1-5 2002 (Paris). ArXiv : gr-qc/0208027.
  • Norbert Straumann ; On the Cosmological Constant Problems and the Astronomical Evidence for a Homogeneous Energy Density with Negative Pressure, conférence donnée au premier séminaire Poincaré (Paris - Mars 2002). ArXiv : astro-ph/0203330.
  • Norbert Straumann ; Dark Energy, conférence donnée à la Seventh Hungarian Relativity Workshop, 10-15 August, 2003, Sarospatak (Hongrie) par l'auteur (Université de Zurich, Suisse). ArXiv : gr-qc/0311083.
  • Steven Weinberg ; The Cosmological Constant Problem, conférence donnée à Dark Matter 2000 (février 2000). ArXiv : astro-ph/0005265.
  • Steven Weinberg ; Theories of the Cosmological Constant, conference donné aux Critical Dialogues in Cosmology, Princeton University (juin 1996). ArXiv : astro-ph/9610044.
  • Steven Weinberg ; The Cosmological Constant Problem, Review of Modern Physics 61 (1989) 1-23. Textes des conférences Morris Loeb données à l'université Harvard en mai 1988.

Notes[modifier | modifier le code]

  1. Que cache la constante cosmologique, Revue Pour la science
  2. C. W. Misner, Kip S. Thorne & John A. Wheeler ; Gravitation, Freeman & Co. (San Francisco-1973), ISBN 0-7167-0344-0.
  3. Norbert Straumann ; On the Cosmological Constant Problems and the Astronomical Evidence for a Homogeneous Energy Density with Negative Pressure, conférence donnée au premier séminaire Poincaré (Paris - Mars 2002). Texte complet disponible sur l'ArXiv : astro-ph/0203330.
  4. Brevet US 6,960, 975