Numération romaine

Un article de Wikipédia, l'encyclopédie libre.
(Redirigé depuis Chiffres romains)
Aller à : navigation, rechercher
A. D. MCMXXXII, ce qui correspond à Anno Domini (An de Grâce) 1932.

La numération romaine est un système de numération utilisé par les Romains de l'Antiquité. À partir de seulement sept lettres ou chiffres romains, il est possible écrire les nombres entiers de 1 à 4999. Simples « abréviations destinées à notifier et à retenir les nombres », elles ne permettaient pas à leurs utilisateurs de faire des calculs, ceux-ci étant effectués au moyen d'abaques[1].

La numération a été normalisée dans l’usage actuel et repose sur quatre principes :

  • toute lettre placée à la droite d’une autre figurant une valeur supérieure ou égale à la sienne s’ajoute à celle-ci ;
  • toute lettre d’unité placée immédiatement à la gauche d’une lettre plus forte qu’elle, indique que le nombre qui lui correspond doit être retranché au nombre qui suit ;
  • les valeurs sont groupées en ordre décroissant, sauf pour les valeurs à retrancher selon la règle précédente ;
  • la même lettre ne peut pas être employée quatre fois consécutivement sauf M.

Lettre d’unité : I est une unité pour V et X, X est une unité pour L et C, C est une unité pour D et M.

L'entrée du Colisée, avec le chiffre LII (52).

Origine[modifier | modifier le code]

Contrairement à une idée reçue, les chiffres romains ne sont pas acronymiques : par exemple, C n’est pas, au départ, l’abréviation de centum (écrit CENTVM). Les chiffres, attestés dans d’autres langues et écritures d’Italie, étaient au départ des symboles séparés, confondus ensuite avec les lettres. Ainsi, en numération étrusque (dont l’alphabet également a été emprunté et adapté par les Romains) on trouve les symboles I, Λ, X, ⋔, 8 et ⊕ pour I, V, X, L, C et M[2].

En fait, la critique moderne reconnaît que la numération romaine est une survivance d'une pratique archaïque, antérieure à l'invention même de l'écriture (et donc, à strictement parler, préhistorique), et que l'on retrouve dans de nombreuses civilisations[3].

Ces chiffres seraient dérivés de l'utilisation de bâtons à entailles et de la nécessité d'y faire figurer des repères : Le berger qui veut compter ses bêtes sans savoir énumérer prend simplement un bâton sur lequel figurent des encoches, fait passer son troupeau devant lui, et décale son ongle d'une encoche à chaque fois qu'une bête passe devant lui : l'encoche finale correspond au nombre de bêtes, et il suffit de repérer sa position pour conserver le nombre. Avec ce système, les premiers chiffres sont toujours des encoches simples, ultérieurement transcrites par des « I ».

Le repérage n’est pas aisé dès que le nombre d’encoches dépasse une poignée, parce que l’œil ne perçoit pas clairement les collections au-delà de trois ou quatre éléments[réf. nécessaire] : lire IIIIIIII est difficile (par comparaison à VIII, beaucoup plus simple). Le berger serait naturellement conduit à intercaler régulièrement des encoches de forme différente, pour servir de repère visuel ; et le regroupement naturel (pour un berger comptant sur ses dix doigts) est par groupes de cinq (de 10 pour les Étrusques).

Le repère « cinq » naturel pourra être une encoche plus longue (utilisée sur les règles), ou en biais (utilisée sur les tailles), mais ces deux marques ne se différencient pas bien des encoches simples quand il s'agit de les transcrire. Les marques simples finalement utilisées sont formées par une encoche double (en forme de V, ou de Λ quand on le lit dans l'autre sens). Le regroupement suivant, à dix encoches, est pratiquement toujours une encoche en croix X. Les repères ultérieurs ont des formes plus élaborées, à trois encoches : 50 correspond à « V plus une encoche », ce qui donne initialement des formes en N, Z ou E ; et cent correspond à « X plus une encoche », donnant des formes de type étoile (Ж). Ces formes étaient moins stables, et ont évolué par la suite vers des formes à deux traits, en L pour cinquante, et C pour cent.

Avec un bâton ainsi marqué, le berger peut repérer assez facilement l'encoche sur laquelle s'est arrêté son décompte. S'il a treize bêtes, par exemple, son ongle s'arrête sur la troisième encoche après la première dizaine, ce qui se retranscrit simplement XIII. S'il en a vingt-neuf, son ongle est à une encoche avant la troisième dizaine, ce qui se note XXIX. S'il en a cinquante neuf, son doigt a passé la première cinquantaine, et se trouve à une encoche avant la dizaine suivante: LIX.

Ce repérage primitif peut conduire à des écritures très atypiques : par exemple, un cran avant la dizaine avant cinquante se noterait IXL (pour trente neuf). Il a été régularisé par la suite, pour former le système connu de nos jours.

Notation romaine classique de base[modifier | modifier le code]

Notation classique
Chiffre
romain
Valeur Signification
I 1 Une marque verticale. Signe qui dérive de la pratique ancienne de l'entaille, comme l'ensemble de la numération romaine[4].
V 5 Une marque à laquelle on ajoute une autre marque (d’où des graphies archaïques comme ⋀, ⊢, ⋋ ou ⋌, elles-mêmes issues de lettres phéniciennes ou égyptiennes, les deux représentations ou interprétations ayant existé simultanément avant de s’unifier).
X 10 Une marque barrée.
L 50 Un V barré (proche de 𐌙 à l’origine, c’est-à-dire V et I superposés) aplati en puis confondu avec L.
C 100 Un X barré (proche de Ж à l’origine, soit X et I superposés) écrit ensuite >I< ou ↃIC et abrégé en (apostrophus) ou C. La forme C s’est imposée en raison d’une confusion avec le C de CENTVM.
D 500 un encadré ( et superposés) devenu D, confondu ensuite avec D. Sur des livres anciens, on trouve parfois IↃ pour signifier 500. Voir variantes ci-dessous.
M 1 000 un X entouré ou encadré, proche de X, qui, passant par plusieurs formes, dont , a été écrit comme un phi grec Φ, puis est devenu CIƆ et (entre autres), lesquelles formes ont finalement été confondues avec M, d’autant plus que 1 000 se dit mille en latin. Sur des livres anciens, on trouve parfois CIƆ pour signifier 1000. Voir variantes ci-dessous.

Ce système, qui simplifiait les anciennes numérations grecques et phéniciennes, permet d’écrire tous les nombres de 1 à 4 999, en utilisant les lettres de l’alphabet latin les plus ressemblantes aux anciens systèmes unaires. Néanmoins ce système ne les a pas remplacés totalement, car il était trop simplifié et insuffisant pour exprimer tous les nombres (en particulier les nombres plus grands, qui ont donné lieu à toutes sortes d’extensions).

La complexité du système romain de base (sans les nombres supérieurs à 4 999) apparaît déjà dans les exemples suivants :

Unités Unités + 10 Dizaines Centaines Milliers
1 = I 11 = XI 10 = X 100 = C 1 000 = M
2 = II 12 = XII 20 = XX 200 = CC 2 000 = MM
3 = III 13 = XIII 30 = XXX 300 = CCC 3 000 = MMM
4 = IV 14 = XIV 40 = XL 400 = CD 4 000 = MMMM
5 = V 15 = XV 50 = L 500 = D  
6 = VI 16 = XVI 60 = LX 600 = DC
7 = VII 17 = XVII 70 = LXX 700 = DCC
8 = VIII 18 = XVIII 80 = LXXX 800 = DCCC
9 = IX 19 = XIX 90 = XC 900 = CM

Aussi sa conception complexe, mêlant additions et soustractions était également difficile à comprendre, même pour les Romains eux-mêmes qui ont continué à utiliser des systèmes purement additifs dont sont issues ces formes « simplificatrices » (notamment pour les calculs). Il en a persisté de nombreuses variantes ne respectant pas les règles imposées ci-dessus, et faisant appel aux véritables origines purement additives de ce système de numération.

Certains nombres peuvent s'écrire de plusieurs façons : par exemple 4 peut s'écrire IIII (forme additive) ou IV (forme soustractive)[5].

La règle soustractive romaine est une règle d'usage : on peut ôter I de V ou X pour noter 4 ou 9, ou ôter X de L ou C pour noter 40 ou 90, mais ôter I de L ou C n'est pas pratiqué : un Romain écrit XLIX pour 49 et pas IL, et XCIX pour 99 et pas IC.

Les règles soustractives imposées ont toujours cessé leur effet au-delà des milliers, comme en témoigne l’écriture attestée et persistante MMMM.

Mode opératoire[modifier | modifier le code]

Pour connaître la valeur d’un nombre écrit en chiffres romains, il faut lire le nombre de droite à gauche, il suffit d'ajouter la valeur du chiffre, sauf s'il est inférieur au précédent, dans ce cas, on le soustrait. Ainsi :

  • XVI = 1 + 5 + 10 = 16 ;
  • XIV = 5 - 1 + 10 = 14, car I est inférieur à V ;
  • DIX = 10 - 1 + 500 = 509, car I est inférieur à X ;
  • MMMMCMXCIX = 10 - 1 + 100 - 10 + 1 000 - 100 + 1 000*4 = 4 999 ;
  • MMMMDCCCLXXXVIII = 4 888, est le nombre romain le plus long en quantité de symboles.

Exemples de chiffres romains dans le système de base[modifier | modifier le code]

  • 666 = DCLXVI (fait remarquable, le « Nombre de la Bête » écrit en chiffres romains fait apparaître tous les chiffres, hormis M, dans l'ordre décroissant de valeur) ;
  • 888 = DCCCLXXXVIII ;
  • 1 000 = M ;
  • 1 515 = MDXV = 1 000 + 500 + 10 + 5 ;
  • 1 975 = MCMLXXV = 1 000 + (1 000 - 100) + 50 + 10×2 + 5 ;
  • 1 999 = MCMXCIX = 1 000 + (1 000 - 100) + (100 - 10) + (10 - 1) ;
  • 2 002 = MMII = 1 000×2 + 1×2.
Les cent premiers nombres entiers écrits en chiffres romains
I II III IV V VI VII VIII IX X
XI XII XIII XIV XV XVI XVII XVIII XIX XX
XXI XXII XXIII XXIV XXV XXVI XXVII XXVIII XXIX XXX
XXXI XXXII XXXIII XXXIV XXXV XXXVI XXXVII XXXVIII XXXIX XL
XLI XLII XLIII XLIV XLV XLVI XLVII XLVIII XLIX L
LI LII LIII LIV LV LVI LVII LVIII LIX LX
LXI LXII LXIII LXIV LXV LXVI LXVII LXVIII LXIX LXX
LXXI LXXII LXXIII LXXIV LXXV LXXVI LXXVII LXXVIII LXXIX LXXX
LXXXI LXXXII LXXXIII LXXXIV LXXXV LXXXVI LXXXVII LXXXVIII LXXXIX XC
XCI XCII XCIII XCIV XCV XCVI XCVII XCVIII XCIX C

Une fois que ces conventions d’écriture ont été posées, on sait écrire des entiers en chiffres romains. Mais les mathématiciens de l'époque n’utilisaient pas cette notation pour faire des additions ou des multiplications, ils avaient recours à des abaques. Ils utilisaient de ce fait une numération positionnelle, mais sans avoir conscience que cette numération positionnelle aurait pu servir à écrire les nombres plus grands de façon permanente.

Fractions[modifier | modifier le code]

Fractions duodécimales[modifier | modifier le code]

Fraction duodécimale Fraction irréductible Fraction unitaire Représentation Nom
(nominatif et génitif)
Signification
1/12 uncia, unciae Une once, un douzième
2/12 1/6 •• ou : sextans, sextantis un sixième
3/12 1/4 ••• ou quadrans, quadrantis un quart
4/12 1/3 •••• ou :: triens, trientis un tiers
5/12   ••••• ou :: quincunx, quincuncis cinq onces (quinque unciaequincunx)
6/12 1/2 S semis, semissis un demi (moitié)
7/12   S• septunx, septuncis sept onces (septem unciaeseptunx)
8/12 2/3 S•• ou S: bes, bessis deux tiers
9/12 3/4 S••• ou S: dodrans, dodrantis
ou
nonuncium, nonuncii
trois quarts (de-quadransdodrans)
ou
neuf onces (nona uncianonuncium)
10/12 5/6 S•••• ou S:: dextans, dextantis
ou
decunx, decuncis
cinq sixièmes (de-sextansdextans)
ou
dix onces (decem unciaedecunx)
11/12 S••••• ou S:: deunx, deuncis onze douxièmes (de-unciadeunx)
12/12 1/1 I as, assis as (monnaie) ; un (unité)

Autres fractions[modifier | modifier le code]

Fraction unitaire Nom Signification Représentation Traduction
1/8 sexcunx, - uncis
ou
sescuncia, -ae
de sesqui- et uncia, i.e. 1½ uncias  ? un huitième
1/24 semuncia, -ae de semi- et -uncia, i.e. demi-once  ? un vingt-quatrième
1/36 binae sextulae, binarum sextularum
ou
duella, -ae
deux sextules
ou
tiers de l'once
 ? un trente-sixième
1/48 sicilicus, -i sicilique, i.e. quart de l'once  ? un quarante-huitième
1/72 sextula, -ae sextule, i.e. sixième de l'once  ? un soixante-douzième ou septante-deuxième
1/144 dimidia sextula, dimidiae sextulae demi-sextule  ? un cent-quarante-quatrième
1/288 scripulum, -i  ?  ? un deux-cent-quatre-vingt-huitième ou deux-cent-octante-huitième
1/1728 siliqua, -ae  ?  ? un mille-sept-cent-vingt-huitième

Extensions[modifier | modifier le code]

Variantes au Moyen Âge et à la Renaissance[modifier | modifier le code]

Horloge avec un quatre d'horloger.

Au Moyen Âge, l’écriture des chiffres romains est parfois abâtardie.

4 est écrit IIII au lieu de IV (ce qui, en fait, n'est qu’une variante ancienne - en pratique chez les Étrusques). Cet usage fut repris en horlogerie, où le chiffre 4 s'écrit IIII, essentiellement pour des raisons de lisibilité sur un cadran rond, surtout quand les bières (gravures chiffrées) y sont inclinées. C'est ce qui lui vaut son nom de quatre d'horloger[6].
De 60 à 400, on compte et on écrit par vingtaines, le chiffre vingt (xx) étant placé en exposant : soit IIIIxx pour 80.[réf. nécessaire] :
L’Hôpital des Quinze-Vingts à Paris doit son nom à cette façon de compter : il pouvait accueillir 300 (15×20) patients.
Pour les centaines, on peut indiquer le nombre de centaines suivi du marqueur des centaines (c, voire au pluriel ctz pour centz) en exposant : donc 300 s’écrit IIIc ou IIIctz.[réf. nécessaire]

Ces règles n’ont pas été telles dès les premières attestations, surtout épigraphiques : plusieurs graphies possibles ont coexisté librement (comme IIX pour VIII afin de réduire le nombre de symboles par extension de la règle soustractive, ou à l’inverse VIIII pour IX afin de ne pas utiliser la règle soustractive). Ce n'est que récemment que le mode opératoire a été fixé.

Chiffres romains étendus.

Dans certains textes des XVe et XVIe siècles on utilise aussi (attention ! il y a des problèmes de rendu des caractères Unicode avec certains navigateurs. Les signes pour 1 000, 5 000 et 10 000 sont indiqués dans l’image ci-contre) :

  • , ou la ligature de CIↃ, pour 1 000 ;
  • , ou la ligature de IↃↃ, pour 5 000 ;
  • , ou la ligature de CCIↃↃ pour 10 000 ;
  • mais on n'utilise pas cette notation en notation soustractive : 4 000 s'écrit MMMM et non MIↃↃ.

On remarquera que dans les symboles ci-dessus, le nombre de cercles ou demi-cercles (appelés apostrophus en latin) indique un facteur 10 appliqué au chiffre médial I dont l’origine pourrait être en fait la ligature des sérifs verticaux des lettres CↃ accolées (ce qui fait que le C retourné en indique en fait bien un facteur 10, le I médial étant alors souvent omis lorsque les deux chiffres sont accolés l’un à l’autre).

À l’origine, le I médial était en fait plus long que le I désignant l’unité, et ressemblait plus à notre longue barre verticale |, dépassant au-dessus des barres unitaires et sous leur ligne de base, de sorte qu’une autre forme approchée que le D aurait dû plus ressembler au thorn médiéval Þ encore utilisé aujourd’hui dans les langues nordiques.

On remarquera aussi que les formes en demi-cercle valent la moitié de la forme pleine (dans ce cas la notation du I initial est requise pour fermer le diamètre du demi-cercle) ; la forme D apparaît donc bien aussi la moitié de , ou comme la ligature de IↃ.

Cette théorisation est en fait une adaptation contemporaine d’une ancienne écriture grecque médiévale, où la lettre majuscule phi (Φ) était aussi utilisée pour désigner le nombre 1 000, et résultait d’une adaptation à l’alphabet grec du système unaire initial utilisant des barres verticales | pour encadrer les multiples de 100, et une barre horizontale supplémentaire en chef pour indiquer un multiple de 1 000. Aussi 1 000 à l’origine ressemblait plus à un X encadré, qui ressemblait lui-même au phi grec. Aussi l’apostrophus latin aurait eu aussi une apparence plus carrée, avant qu’on la confonde avec un C renversé, comme cela avait déjà été fait pour la lettre C latine symbolisant le nombre 100.

Note : la séparation du symbole représentant 1 000 avec l’apostrophus, combiné au I médial (dont le raccourcissement s’est poursuivi ensuite) serait à l’origine du caractère \infin utilisé aujourd’hui en mathématiques pour symboliser l’infini, comme une évolution de l’utilisation du mot latin mille au pluriel (et de sa valeur inconnue) pour représenter tout nombre arbitrairement grand et inconnu (on notera l’expression française encore utilisée aujourd’hui « des cents et des milles » rappelant cet usage). Ce symbole serait simplement l’évolution de la ligature minuscule CIↃ en écriture manuscrite onciale.

Ainsi le nombre 5 000 peut aussi être représenté par DↃ (500 × 10) au lieu de IↃↃ ci-dessus. Mais comme tous les « C renversés » sont aussi liés au I initial, en fait on peut ignorer la présence de ce I et transformer tous les « C renversés » simplement en D. Ainsi le nombre 5 000 s’écrit alors simplement DD, et le nombre 10 000 normalement écrit CCIↃↃ s’écrit aujourd’hui plus simplement CCDD.

Dans cet ouvrage de Th. Zwinger, l'éditeur a choisi de noter la date selon la fausse étymologie en honneur à son époque: CIↃ (1000) et IↃ (500), soit 1586.

Attention. le nombre 400 s’écrit aujourd’hui normalement CD (500-100), il est distinct de la forme historique peu usitée (aujourd’hui non recommandée) CIↃ (100 × 10) pour 1 000 (à ce moment-là, 400 s’écrivait plutôt CCCC sans utiliser le mode soustractif, pour éviter la confusion). On peut par contre utiliser CID pour désigner sans ambiguïté la notation historique de 1 000, si on ne dispose pas du caractère « C retourné » (remplacé ici par la lettre D, non ambiguë du moment qu’on le précède bien par le I médial).

D’autres symboles utilisant ce principe de composition ont pu être utilisés pour indiquer les milliards (trois cercles) ou demi-milliard (trois demi-cercles). On remarquera que le diamètre vertical est toujours noté, et que le tracé d’un autre diamètre ou rayon horizontal pouvait aussi être utilisé au lieu d’un cercle ou demi-cercle supplémentaire.

Cependant, le tracé utilisant simplement la lettre C, retournée en et placée après la lettre I, s’est imposé rapidement (notamment en imprimerie), car cela ne nécessitait pas de fonte supplémentaire et améliorait la lisibilité des nombres tout en étant plus facile à tracer à la plume (mal adaptée au tracé de petits cercles) ; de ce fait la forme du C à l’endroit ou à l’envers pouvait prendre celle de parenthèses ( et ) liées au I médial. On retrouve cet usage dans les anciens livres de comptes, du Moyen Âge jusqu’à la Renaissance où la graphie n’a cessé de se complexifier.

Variantes pour l’insertion des nombres romains dans un texte[modifier | modifier le code]

Au Moyen Âge, quand la graphie latine monumentale a été remplacée par l’onciale, plus facile à tracer à la plume, les chiffres s’écrivaient en lettres minuscules comme le reste du texte. L’usage des majuscules était rare (pas même en début de phrase) et plutôt réservé aux lettrines décoratives en début de paragraphe (qui n’étaient que des variantes agrandies des lettres de l’alphabet).

Aussi, pour permettre l’insertion de nombres dans un texte, ceux-ci étaient encadrés de points médians afin de les distinguer plus facilement des mots. Par exemple, ·xxvıı· représentait le nombre 27 dans les manuscrits médiévaux (la lettre minuscule i ne comportait pas encore de point suscrit, apparu bien plus tard en écriture gothique pour faciliter la lecture du texte, afin de mieux distinguer les i des m et n dont les jambages étaient très proches).

La position de ces points était variable suivant les auteurs (l’usage de la ponctuation, et notamment la distinction du point et de la virgule, n’ayant été bien régulé que bien plus tard), et parfois impossible à distinguer dans le texte du point de ponctuation normale (c'est particulièrement vrai pour les manuscrits en catalan, ancien occitan et vieux français, mais aussi les manuscrits médiévaux en Angleterre et du Saint-Empire). On retrouve également cet usage du point médian (qui prenait souvent l’allure de petits tirets) sur les inscriptions monumentales en latin qui mêlent les nombres avec le texte, par exemple les monuments funéraires et édifices religieux.

L’usage des points médians s’est aujourd’hui perdu car les nombres romains ne sont plus employés comme déterminants adjectifs numéraux (pour indiquer des quantités, on utilise aujourd’hui la notation décimale à chiffres arabes, parfois appelés chiffres indo-européens), mais principalement comme adjectifs ordinaux dont le contexte pose moins de problèmes d’interprétation (après un nom de souverain, ou accompagné d’un suffixe ordinal) et normalement en majuscules (ou petites capitales) au sein d’une phrase.

Plus tard, quand la lettre J s'est différenciée de la lettre I, les documents officiels ont commencé à utiliser le J au lieu du I à la fin d’un nombre (cette forme marquant bien la fin du nombre qu’on ne peut alors plus allonger). Comme à cette époque, il n’y avait pas de différence minuscule/majuscule dans l’écriture onciale, on écrivait donc vııȷ au lieu de vııı ou même ·vııȷ·[7]

Extensions classiques[modifier | modifier le code]

Les différentes formes ci-dessus ont souvent été détournées et parfois étaient incompatibles entre elles, aussi les comptables utilisaient un système de notation plus logique et plus simple, provenant de la disposition de leurs abaques de calcul, et en rapport avec le système initial, purement additif, où une barre s’ajoute à chaque unité. Ils ont repris ce principe :

Au-delà de 4 999, on emploie un macron (barre horizontale, virgula en latin) suscrit au-dessus du nombre pour indiquer un facteur 1 000 et deux macrons pour un facteur 1 000 000. Par exemple :

Extension classique
Chiffre
romain
Valeur Signification
I 1 000 I avec M suscrit, ou avec macron suscrit
V 5 000 V avec M suscrit, ou avec macron suscrit (attesté depuis l'Antiquité)
X 10 000 X avec M suscrit, ou avec macron suscrit
L 50 000 L avec M suscrit, ou avec macron suscrit
C 100 000 C avec M suscrit, ou avec macron suscrit
D 500 000 D avec M suscrit, ou avec macron suscrit
M 1 000 000 M avec M suscrit, ou avec macron suscrit
I 1 000 000 I avec double M suscrit, ou avec double macron suscrit
V 5 000 000 V avec double M suscrit, ou avec double macron suscrit
X 10 000 000 X avec double M suscrit, ou avec double macron suscrit
L 50 000 000 L avec double M suscrit, ou avec double macron suscrit
C 100 000 000 C avec double M suscrit, ou avec double macron suscrit
D 500 000 000 D avec double M suscrit, ou avec double macron suscrit
M 1 000 000 000 M avec double M suscrit, ou avec double macron suscrit

Pour les autres multiples de 1 000, le M suscrit est allongé pour couvrir l’ensemble des chiffres qu’il multiplie.
Cela reste vrai pour le macron suscrit, par exemple CXLIICCCLXVIIIDCCXCV représente le nombre 142 368 795.

Il a cependant existé nombre de variantes, tant dans le tracé que le mode opératoire, avant que ce modèle-là ne soit imposé. La notation M s'est ainsi imposée rapidement au lieu de CIƆ (ou CID) et I, chaque fois que possible. De même M est préférée à CCIƆƆ (ou CCIDD ou CCDD) chaque fois que possible. On utilise M plutôt que CID ou CIƆ, sauf si un groupe de milliers est supérieur à 4 auquel cas on préférera I avec macron si possible pour l’écriture du groupe ; l’écriture doit être consistante dans l’usage systématique des lettres avec macrons si ceux-ci sont utilisés (auquel cas la lettre M ne sera pas utilisée, les nombres étant alors écrits par groupe de 3 chiffres décimaux transcrits à l’aide des seules six lettres D, C, L, X, V, I)

L'épigraphie latine montre des variantes de ce système, avec un comptage par centaines de milliers, noté en encadrant le chiffre sur trois côtés. Ainsi, un fragment des Fastes d'Ostie trouvé en 1941[8],[9] publie le chiffre du recensement d'Auguste et Tibère de 14 apr. J.-C. de la façon suivante :

C S C R K \overline{\mathrm{|XXXXI|}}DCCCC
Ce qui se lit C(ensa) S(unt) C(ivium) R(omanorum) K(apitum) quadragies semel centum milia DCCCC
traduit en “Les citoyens romains sont recensés : quarante et une fois cent mille et neuf cents têtes” soit 4 100 900[10].

Calcul[modifier | modifier le code]

Il se peut que les utilisateurs de ce système de numération aient été amenés, pour effectuer des calculs, à connaître certains résultats par cœur. Si, par exemple, ils savaient le produit de XII par XII, il était alors facile d’en déduire le produit de XII par un de moins ou par un de plus.

Extensions modernes[modifier | modifier le code]

L’extension de la règle soustractive est parfois utilisée de façon systématique avec des symboles de rang inférieur pour raccourcir les nombres au maximum, par exemple IIM = 1 000 - 1×2 = 998, au lieu de CMXCVIII = (1 000 - 100) + (100 - 10) + 5 + 1×3 selon la règle standard. Parfois aussi, les symboles unitaires identiques sont regroupés ensemble après les symboles soustractifs au lieu d'être séparés par ces symboles soustractifs. Cette représentation abrégée peut être obtenue avec l'algorithme suivant :

  • Soit le nombre 3 898 à représenter,
on le décompose chiffre par chiffre en 3 000 + 800 + 90 + 8 comme dans la règle standard.
  • on convertit chaque chiffre avec la représentation la plus courte (pour les multiples de 8 on utilise la règle soustractive sur la dizaine suivante, au lieu de la règle additive sur le multiple de 5),
on obtient MMM CCM XC IIX ;
  • on réordonne tous les chiffres négatifs en tête, en ordre inversé (du plus petit au plus grand),
on obtient IIXCC MMMMCX ;
  • on élimine tous les chiffres qui s'annulent mutuellement en commençant par les chiffres négatifs les plus à gauche,
on obtient IIC MMMM ;
  • s’il reste des groupes de 3 ou 4 symboles unitaires identiques consécutifs, on les réduit avec la règle soustractive,
on obtient IIC MV, le nombre final est alors IICMV, qu'on lit comme 5 000 - 1 102 (on additionne tous les chiffres inférieurs au V final, dont on retranchera ce total).

Suivant ces règles, on obtient aussi des nombres quelquefois plus faciles à lire et interpréter :

  • IIC (100-2) au lieu de XCVIII (100 - 10 + 5 + 1×3) avec la notation standard pour 98 ;
  • IC (100-1) au lieu de XCIX (100 - 10 + 10-1) avec la notation standard pour 99 ;
  • XM (1 000-10) au lieu de CMXC (1 000-100 + 100-10) avec la notation standard pour 990 ;
  • XMV (1 000-10 + 5) au lieu de CMXCV (1 000-100 + 100-10 + 5) avec la notation standard pour 995 ;
  • IM (1 000-1) au lieu de CMXCIX (1 000-100 + 100-10 + 10-1) avec la notation standard pour 999 ; etc.
  • Ces graphies ne sont toutefois pas toujours reconnues par les lecteurs.

Utilisations modernes[modifier | modifier le code]

Chiffres romains sur la poupe du Cutty SarkGreenwich), montrant le tirant d'eau.

Les chiffres romains sont encore couramment utilisés de nos jours pour noter les siècles et les millénaires, comme, « le XXIe siècle » et « le IIIe millénaire ».

On trouve également les chiffres romains sur les cadrans des horloges et des montres. Dans ce cas, le chiffre quatre est souvent écrit IIII au lieu de IV pour une question purement esthétique. En effet, ce faisant, les quatre premiers chiffres ne sont composés que de I (I, II, III et IIII), les quatre suivants sont composés à base de V (V, VI, VII, VIII) et les quatre derniers à base de X (IX, X, XI, XII). Il faut cependant savoir que la graphie IIII date de l’époque romaine et s’est rencontrée longtemps dans les inscriptions, les manuscrits médiévaux puis les imprimés classiques en concurrence avec IV.

Les chiffres romains furent aussi autrefois utilisés pour marquer la date de construction des maisons. Elle se trouve encore sur le fronton de vieilles bâtisses.

C'est également le cas pour le nom des souverains (Louis XIV, …)

Encore actuellement, il est courant de spécifier la date de production d'un film en chiffres romains, à la fin du générique.

Les chiffres romains furent abandonnés au profit des chiffres indo-européens, dits « arabes », qui utilisent un système décimal permettant d’écrire les nombres plus court avec à peine plus de lettres (10 au lieu de 7), et qui incluent le zéro positionnel (0). De plus, le système décimal permet un alignement des chiffres qui facilite énormément les calculs sur papier.

Toutefois, l’extension de la notation avec simple ou double macron suscrit est encore communément utilisée aujourd’hui au-dessus de M comme abréviation du million (M, 106) et du milliard (M, 109).

Dans les numérotations de pages, on trouve parfois les chiffres romains en minuscules ou plus couramment en petites capitales (en imprimerie avec une typographie soignée) :

  • i, ii, iii, iv, v, vi, vii, viii, ix, x, xi, xii, xiii, …, xl, …, l, …, lx, …, xc, …, c, …, cd, …, d, …, dc, …, cm, …, m.
  • i, ii, iii, iv, v, vi, vii, viii, ix, x, xi, xii, xiii, …, xl, …, l, …, lx, …, xc, …, c, …, cd, …, d, …, dc, …, cm, …, m.

En chimie, on désigne par un chiffre romain le degré d'oxydation (comme par exemple le cuivre(II)).

Traditionnellement, les numéros des actes d'une pièce de théâtre sont également écrit en chiffres romains.

Notes et références[modifier | modifier le code]

  1. Georges Ifrah, Histoire universelle des chiffres, p. 454.
  2. Les caractères employés ici pour représenter les formes anciennes des chiffres sont empruntés à diverses écritures, par ressemblance. Le tracé réel des caractères ne peut être directement reproduit ici.
  3. Pour l'ensemble de la question, voir par exemple Georges Ifrah, Histoire universelle des chiffres, Seghers 1981, (ISBN 978-2-221-50205-1)
  4. Georges Ifrah, Histoire universelle des chiffres, Robert Laffont, 1994, p. 464-475
  5. Mireille Cébeillac-Gervasoni, Maria Letizia Caldelli, Fausto Zevi, Épigraphie latine Annexe 3 Onomastique et titulature des empereurs, Armand Colin, 2006, (ISBN 2-200-21774-9), pp. 38-61
  6. Source
  7. Il est à noter que la lettre j minuscule ci-devant, s’écrivait également sans point suscrit. Ceux-ci apparaîtront sur celle-là bien plus tard, sur la nouvelle consonne uniquement. Ce sera par similitude avec la voyelle i avec laquelle le j pouvait encore librement être confondu. Le choix de la forme utilisée est restée longtemps une question de style indépendante de la valeur vocale de la lettre. Pour plus de détails, veuillez consulter Point suscrit.
  8. A. Degrassi, Inscriptiones Italiae, XIII, 1, p. 185
  9. Mireille Cébeillac-Gervasoni, Maria Letizia Caldelli, Fausto Zevi, Épigraphie latine, Armand Colin, 2006, (ISBN 978-2-200-21774-7), pp. 77-79
  10. Claude Nicolet, Censeurs et publicains, économie et fiscalité dans la Rome antique, Fayard, 2000, (ISBN 978-2-213-60296-7), pp.189-190

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :

Bibliographie[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]