Chaux (matière)

Un article de Wikipédia, l'encyclopédie libre.
Ceci est une version archivée de cette page, en date du 13 janvier 2015 à 03:18 et modifiée en dernier par Sebleouf (discuter | contributions). Elle peut contenir des erreurs, des inexactitudes ou des contenus vandalisés non présents dans la version actuelle.
Une carrière de calcaire à Brønnøy, en Norvège.
Bac contenant de la chaux hydraulique (éteinte) naturelle et de l'eau pour la maçonnerie de pierres de taille dans le bâtiment.

La chaux est une matière généralement poudreuse et de couleur blanche, obtenue par calcination du calcaire, industriellement dans un four à chaux. Elle est utilisée depuis l'Antiquité, notamment dans la construction.

Chimiquement, c'est un oxyde de calcium avec plus ou moins d'oxyde de magnésium mais la désignation usuelle de chaux peut englober différents états chimiques de ce produit. On les distingue notamment dans le langage courant par rapport à leurs utilisations dans la construction :

  • la chaux vive est le produit direct de la thermolyse (ou calcination) du calcaire, principalement de l'oxyde de calcium (CaO) ;
  • la chaux aérienne, ou chaux éteinte, est obtenue par la réaction de la chaux vive avec de l'eau. Elle est constituée surtout d'hydroxyde de calcium (Ca(OH)2). Elle est dite « aérienne », car elle réagit avec le dioxyde de carbone (CO2) de l'air ;
  • la chaux hydraulique contient en plus des silicates et des aluminates, car elle provient de calcaires argileux. Elle est appelée « hydraulique » parce qu'elle durcit en présence d'eau ;
  • la chaux désigne aussi le matériau « ayant fait prise » après utilisation. Bien que ce ne soit que le liant, on parle d'un mur à la chaux, mais chimiquement la chaux en question est majoritairement redevenue du calcaire (principalement du carbonate de calcium (CaCO3)) ;
  • il existe aussi de la chaux dolomitique ou chaux magnésienne à base de dolomie ou de calcaire magnésien.

Histoire

Le principe qui consiste à calciner ou « brûler » une pierre pour en extraire un composant meuble que l'on pourra reconstituer ensuite a probablement été d'abord découvert avec le gypse qui, en étant chauffé (à 120 °C), donne du plâtre. Ce matériau plus facile à obtenir a été découvert avant la chaux, mais des mélanges plâtre et chaux sont utilisés comme support de peinture murale en Égypte dès 2600 ans avant J.-C.

Des constructions en chaux sont ensuite apparues, jusqu'à être utilisées dans toutes les constructions romaines, des habitations aux aqueducs en passant par les thermes. C'est d'ailleurs la chaux qui a donné son nom au calcaire, qui vient du latin calcarius, « qui contient de la chaux » et calx, calcis, la chaux. Les Romains obtenaient une sorte de chaux hydraulique en rajoutant de la pouzzolane ou des des tuiles et des briques concassées.

Des nombreuses techniques d'application utilisées à l'époque romaine, ont traversé le Moyen Âge. Hormis le mortier de terre, le mortier de chaux est restée quasiment incontournable dans le bâti jusqu'à la redécouverte du ciment au milieu du XIXe siècle. Il a rapidement remplacé la chaux dans toutes les constructions modernes en raison d'une rigidité plus importante et surtout d'un coût moindre : parpaings de ciment, béton...

Le XIXe siècle s'intéresse à l'hydraulicité des chaux. On l'attribue d'abord erronément à l'oxyde de manganèse (Bergman, Louis-Guyton de Morveau) et ensuite à l'argile (Le Phare d'Eddystone) par John Smeaton, Saussure, Gratien-Vitalis et enfin Vicat). Louis Vicat est crédité en France de l'invention du ciment[1]. Il ne dépose pas de brevet ; le brevet sur le Ciment Portland est déposé par l'Anglais Joseph Aspdin en 1824.

La chaux connait au début du XXIe siècle un regain d'intérêt. En effet le ciment est incompatible avec la maçonnerie de bâtis anciens en moellons et pierres de taille. Le ciment étant un matériau rigide et imperméable à l'air, il ne convient pas à une maçonnerie traditionnelle qui nécessite de la souplesse et d'être perméable à l'air. La perméabilité à l'air permet à une maçonnerie de s'assécher. L'eau qu'elle absorbe par la pluie ou des remontées capillaires, peut s'évacuer par ses joints à la chaux alors que dans le cas d'un mortier au ciment, le mur ne peut pas s'assécher et conserve l'eau qu'il absorbe ce qui peut entraîner l'apparition de salpêtre, de mousses microscopiques, d'auréoles, de taches, et de coulures. Le ciment doit être employé uniquement dans la mise en œuvre de matériaux eux-mêmes en ciment : parpaing de ciment, carrelage...

Les différents types de chaux

La chaux vive

La chaux vive est la chaux sortie du four à chaux. Elle prend l'apparence de pierres pulvérulentes en surface. Le principal constituant de la chaux vive est l'oxyde de calcium, qui a pour formule CaO.

La chaux vive est une chaux qui n'a pas été éteinte.

La chaux vive pouvait être amenée sous cette forme sur chantier où elle était éteinte ou transportée sur de longue distance dans des sacs, à l'abri de l'humidité.

Précautions et utilisation

La chaux vive est un produit potentiellement dangereux, principalement employé dans l'industrie et l'agriculture. Hydrophile, elle est utilisée pour assécher, détruire les matières organiques riches en eau. En cas de mélange de grandes quantités de chaux vive et d'eau, la chaleur dégagée est telle que l'eau peut se mettre à bouillir et projeter de la chaux, qui est corrosive. Il est de ce fait conseillé d'utiliser des lunettes et des gants lors de la manipulation.
Il est recommandé de verser progressivement la poudre dans l'eau et non pas l'inverse.
Il est également recommandé de brasser le mélange eau/chaux vive tout au long de sa préparation, ceci afin de limiter les risques de projection.

La chaux éteinte

La chaux vive est transformée en chaux éteinte par immersion dans l'eau. Cette immersion, provoque une dislocation, un foisonnement, ainsi qu'une forte chaleur (autrement dit la réaction est exothermique). Le résultat est une pâte, qui prend le nom de chaux éteinte (portlandite), qui a pour formule, Ca(OH)2, soit de l'hydroxyde de calcium.

Cette matière, mêlée éventuellement à des agrégats est utilisée dans le bâtiment la confection d'enduits et de mortiers.

La présence d'argile associée au calcaire de calcination conduit à différents types de chaux: Il y a lieu de distinguer:

  • chaux aérienne: le phénomène de cristallisation s'opère en présence d'air. Les chaux aériennes se répartissent en:
    • chaux grasses, obtenues à partir de calcaires très pures ou contenant de 0,1 à 1% d'argile
    • chaux maigre, obtenues à partir de calcaires contenant de 2 à 8% d'argile
  • chaux hydraulique: le phénomène de cristallisation s'opère aussi en milieu aqueux, obtenues à partir de calcaires contenant plus de 8% d'argile

Au delà de 20% d'argile, les calcaires sont impropres à la confection de la chaux. A partir de 35%, La roche devient tendre et friable. A partir de 50% on parle de marne calcaire, elle devient plastique. Avec 70% d'argile, elle devient marne argileuse. Les marnes argileuses, impropres à la confection des chaux mêmes hydrauliques, seront employées calcinées et broyées, dans les ciments naturels (le ciment prompt, improprement appelé ciment romain), ou dans la préparation du clinker pour les ciments artificiels (Ciment Portland)

La dénomination chaux grasse/chaux maigre vient de ce que les chaux maigres augmentent peu de volume lorsqu'on les réduit à l'état de pâte tandis que les chaux grasses donnent un volume plus important, on dit qu'elles foisonnent beaucoup plus. De même les chaux grasses forment avec la même quantité de sable un mortier plus gras que lorsqu'on emploie des chaux maigres[1]

Pendant longtemps on a appelé chaux maigres celles qui avaient la propriété de durcir dans l'eau et chaux grasses celles qui n'avait pas cette propriété. La distinction, chaux aérienne/chaux hydraulique est venue du fait que certaines chaux maigres ne sont pas hydrauliques[1].

On appelle donc chaux grasse, celle qui donne un foisonnement considérable, chaux maigre, celle qui foisonne peu et qui ne durcit pas dans l'eau et chaux hydraulique, celle qui a la propriété de durcir dans l'eau. On donne aussi assez souvent le nom de chaux commune à la première de ces chaux.

L'usage erroné était jusqu'au XIXe siècle que les chaux qui foisonnent peu à l'extinction étaient impropre à l'usage des mortiers.

En France, l'appellation conseillée par la norme NF EN 459-1 est CL-Q.

Pour avoir de la chaux hydraulique, il est nécessaire d'employer la quantité juste d'eau, afin de ne pas permettre la prise du matériau.La matière obtenue est sous forme de poudre blanche. Pour avoir de la chaux aérienne, la quantité d'eau ajoutée n'est pas limitée.Le produit obtenu est sous forme de pâte ayant un pH important et sa formule chimique est Ca(OH)2.

La chaux aérienne

C'est de l'hydroxyde de calcium Ca(OH)2. Son nom minéralogique est portlandite.

La chaux aérienne (chaux hydratée, chaux éteinte, chaux grasse, chaux maigre) est obtenue par hydratation de chaux vive issue d'un calcaire très pur. On la trouve sous différentes appellations : chaux éteinte, CAEB (ancienne normalisation : chaux aérienne éteinte pour le bâtiment). L'appellation conseillée par la norme NF EN 459-1 est CL (Calcic Lime traduit par chaux calcique) pour les chaux contenant moins de 5 % d'oxyde de magnésium suivi d'un chiffre 90, 80 ou 70 indiquant le pourcentage de CaO.

Plus la teneur en oxyde de calcium est élevée, plus la chaux est dite grasse.

Sa masse volumique est d'environ 500 kg/m³.


L'emploi de la chaux est attesté dès l'âge du bronze (environ 2000 ans avant J.-C.) sur certains sites archéologiques suisses. Des blocs de calcaire calcinés constituent ainsi le noyau interne des murailles de certaines places fortifiées. La chaux aérienne sert depuis l'Antiquité à réaliser des mortiers pour la construction, des enduits et des badigeons sur les murs. Elle est aussi utilisée pour protéger les arbres fruitiers, ou lutter contre la putréfaction des cadavres en cas d'épidémie.

Cycle

Représentation d'un four à chaux en 1906 (Leçons élémentaires de chimie de l'enseignement secondaire des jeunes filles)
Calcination

Par calcination du calcaire autour de 1000°C (CaCO3) on obtient de la chaux vive (Oxyde de Calcium : CaO) et un fort dégagement de dioxyde de carbone (CO2). C'est la décarbonatation.

La réaction s'accompagne d'une perte de masse pouvant aller jusqu’à 45 % et jusqu'à 15 % de son volume, correspondant à la perte en dioxyde de carbone selon la formulation chimique :

CaCO3 → CaO + CO2
Extinction

La transformation de chaux vive en chaux éteinte s'effectue par ajout d'eau (H2O). Cette opération d'extinction produit l'hydroxyde de calcium Ca(OH)2, avec un fort dégagement de chaleur :

CaO + H2O → Ca(OH)2 + 1155 kJ / kgCaO

Après transformation, l'augmentation du volume est de près de 30 %.

L'extinction peut être réalisée de différentes manières :

  • arrosage superficiel des blocs de chaux vive, puis terminaison de la réaction à l'air ;
  • immersion des blocs de chaux vive dans un grand volume d'eau puis terminaison de la réaction à l'air ;
  • mélange eau-chaux dans un malaxeur avec contrôle de la réaction exothermique (dans l'industrie) ;
  • immersion des blocs de chaux vive dans un grand volume d'eau puis terminaison de la réaction dans l'eau.

Dans les trois premiers cas on obtient une chaux en poudre (fleur de chaux, chaux grasse, CAEB, chaux éteinte…). Dans le dernier cas, la chaux éteinte produite prend l'apparence d'une pâte (chaux en pâte) que l'on pourra garder tant que l'on maintient en surface de l'eau limitant les échanges de dioxyde de carbone (donc de carbonatation).

La chaux en poudre correspond bien aux pratiques actuelles du bâtiment (dosage en volume, mélange à la bétonnière…).

La chaux en pâte permet l'obtention de mortiers plus "gras", moins sujets à la dessiccation rapide, des enduits ou des badigeons carbonatant plus vite et donc plus résistants. Par contre, son dosage est plus difficile, le mélange avec le sable plus délicat sauf à utiliser l'outillage adapté (malaxeur planétaire, rabot…). La meilleure carbonatation de la chaux en pâte a probablement comme origine le fait que l'extinction se faisant à l'abri de l'air, aucune carbonatation partielle anticipant la prise ne se produit. Par ailleurs, la finesse de la chaux obtenue, la présence de gels colloïdaux sont autant d'éléments qu'il faudrait étudier.

Carbonatation

La prise de la chaux aérienne s'effectue par carbonatation, c’est-à-dire en absorbant le dioxyde de carbone (CO2) présent dans l'atmosphère : d'où son nom de « chaux aérienne » :

Ca(OH)2 + CO2 → CaCO3 + H2O

Selon l'humidité du milieu, cette réaction se produit sur plusieurs mois : la vapeur d'eau se lie avec le dioxyde de carbone atmosphérique pour former l'acide carbonique ; la chaux fixe le dioxyde de carbone contenu dans cet acide et se transforme en calcaire. Le résultat de cette opération est à nouveau du calcaire (CaCO3).

Le mécanisme de prise par carbonatation s'effectue en présence d'eau, d'où une maîtrise indispensable des conditions de mise en œuvre (humidification des supports, contrôle des conditions climatiques...).

Utilisations

Un exemple d'application de la chaux dans le bâtiment : une maçonnerie traditionnelle avec un enduit à la chaux.

Les usages de la chaux aérienne sont nombreux. En France, son usage se répartit ainsi :

  • Sidérurgie : environ 30 % ;
  • Travaux publics, routes : environ 23 % ;
  • Agriculture : environ 10 % :
  • Traitement des eaux : environ 10 % ;
  • Construction, bâtiment : environ 3 % ;
  • Absorption du dioxyde de carbone : appareils d'anesthésie et respiratoires de secours ;
  • Alimentation.
Utilisation dans l'agriculture

Pour l'agriculture, on utilise de la chaux magnésienne ou dolomitique, qui amende les sols acides en apportant du magnésium. On utilise, le plus souvent, de la chaux calcique. Les chaux utilisées par l'agriculture sont toujours sous forme d'oxyde de calcium, ou d'oxyde de calcium combiné à l'oxyde de magnésium. Cet amendement est à utiliser modérément sur les sols argileux [pourquoi ?]. Le rôle de l'ion calcium dans le complexe argilo-humique est déjà tenu par le fer.

En plus d'être un amendement calcique et magnésien, le chaulage permet également la destruction des micro-organismes pathogènes contenus dans les effluents d'élevage qui sont acides par nature. La base OH- associée au calcium qui arrive soudainement dans le milieu provoque une augmentation rapide du pH qui détruit ces organismes.

Le plus souvent, l'agriculture utilise aussi du calcaire non cuit pour amender les terrains. C'est du carbonate de calcium, vulgairement appelé « carbonate de chaux ». Le mode d'action est plus lent que celui de la chaux calcinée. Cela provient du fait que l'acidité du terrain doit dégrader le produit avant que celui-ci ne devienne un oxyde et puisse développer la base associée recherchée. Il ne peut garantir une bonne efficacité agronomique que s'il est suffisamment fin pour se solubiliser correctement. L'avantage à l'utilisation de carbonate de calcium est d'ordre économique, car il coûte moins cher à l'utilisateur, et écologique, car il ne détruit pas les organismes utiles du sol. Dans l'absolu, son pouvoir neutralisant est, à quantité égale, très inférieur à celui de la chaux vive.

Utilisation dans l'industrie, dans le traitement des eaux, dans le traitement des fumées

La chaux aérienne est largement utilisée dans l'industrie, le plus souvent sous forme de chaux vive, on utilise sa capacité d'agglomération de certains matériaux on parle de « floculation ».
En sidérurgie, l'ajout de chaux dans le métal en fusion permet l'extraction de certaines impuretés.
Dans le traitement des eaux usées, on stabilise les boues.
Dans les incinérateurs elle est utilisée pour neutraliser les fumées acides chargées en soufre et/ou en chlore.

Utilisation dans les travaux publics

La chaux aérienne est également utilisée dans la réalisation des routes ou des chemins, le plus souvent sous forme de chaux vive. Comme dans l'industrie, on utilise sa propriété de « floculation », il s'agit ici de transformer l'argile (consistance plastique, souple, instable) en matière grumeleuse plus résistante à la compression des sols. À cette action vient s'adjoindre l'effet de consommation d'eau interstitielle. Ce faisant, la teneur en eau des sols trop humides est rabaissée afin d'atteindre le plus souvent l'Optimum Proctor. Cette propriété est également utilisée dans le monde agricole.

Utilisation comme absorbeur de dioxyde de carbone

Les propriétés d'absorption du dioxyde de carbone par la chaux ont été utilisées dans les appareils respiratoires dits en circuit fermé pour épurer le gaz expiré du dioxyde de carbone et permettre sa ré-inhalation après un éventuel apport d'oxygène à très faible débit. Ces techniques sont utilisées en médecine (anesthésie en circuit fermé), dans des appareils respiratoires utilisés en milieux de gaz dangereux. Les activités sous-marines (plongée et sous-marins) utilisent également la chaux comme absorbeur de dioxyde de carbone. La chaux hydratée est mélangée à d'autres composés chimiques comme la soude (NaOH) pour former la chaux sodée ou avec d'autres composés qui accélèrent la vitesse de réaction de la chaux. La présentation en grains poreux de quelques millimètres dans des récipients adaptés au passage des gaz augmente la surface d'échanges et permet l'absorption avec de faibles volumes de chaux facilement transportables. Un indicateur coloré permet une lecture rapide, à l'œil, de la quantité de chaux restante dans la cartouche.

Utilisation dans la décoration d'intérieur et d'extérieur
Maison restaurée à la chaux

Les propriétés de la chaux :

  • Antiseptique, elle désinfecte, assainit l'atmosphère.
  • Elle laisse respirer les maçonneries donc réduit l'humidité et évite ainsi la condensation de l'eau.

Son rendu décoratif est exceptionnel, notamment un velouté unique à l'intérieur comme à l'extérieur. Une décoration en chaux est "vivante" : le matériau respire et ses moirages varient en fonction de l'hygrométrie ambiante. Enfin elle se patine et vieillit extrêmement bien.

Utilisation en cuisine

La chaux a été utilisée pour la conservation d'aliments comme les œufs[2].

La chaux (à raison de 0,1 % dans l'eau) est utilisée dans le trempage du maïs[3] avant cuisson afin de ramollir ses téguments et d'en augmenter la teneur en calcium. En Amérique centrale et au Mexique, la chaux est ajoutée au maïs que l'on broie pour réaliser de la farine "nixtamalisée". Cette farine additionnée d'eau donnera la "masa" qui servira à constituer les différentes galettes de maïs ("tortillas", "nachos", "gorditas"...).

La chaux hydraulique

La chaux hydraulique (chaux maigre) est obtenue à partir de calcaire contenant 10 à 20 % d'argile qui lors de la calcination donne des silicates et aluminates de calcium. Elle fait prise, en quelques heures, au contact de l'eau, d'où son appellation.

L'appellation normalisé NF EN 459-1 est NHL (Natural Hydraulic Lime) suivi d'un nombre 2 ; 3,5 ou 5 indiquant son degré d'hydraulicité. Plus le nombre est grand, plus la chaux réagit avec l'eau. L'ancienne dénomination était XHN.

Plus une chaux est hydraulique, plus elle présente de résistance à la compression moins elle est plastique.

Sa masse volumique est d'environ 800 kg/m³.

Carbonatation de la chaux hydraulique

Le calcaire naturel est le plus souvent mélangés à des marnes et des argiles riches en éléments chimiques principalement la silice et aussi le fer, l'aluminium. Aux températures de cuisson (800 °C et 1 500 °C), le calcium se combine avec ces éléments pour former des silicates, des aluminates et des ferro-aluminates de calcium. Plus la température est élevée et le taux de silice important, moins elle contient de chaux libre (CaO) plus elle est hydraulique. CaCO3 + Al2O3 + Fe2O3 → 3CaOAl2O3 + 4CaOAl2O3Fe2O3

Au contact de l'eau, lors de l'extinction de la chaux vive, et surtout pendant la mise en œuvre des mortiers, ces molécules forment des hydrates insolubles. Les proportions d'alumine et de fer sont très faibles : dans les liants blancs, les teneurs en fer sont inférieures à 0,1 ou 0,2 %. La prise hydraulique est essentiellement due à la réaction entre le CaO et les silicates.

Les chaux hydrauliques font une première prise de type hydraulique représentant approximativement 30 % de la prise au moment de la mise en œuvre (on dit qu'elle "tire") puis une prise secondaire de type aérien c'est là que la chaux et les hydrates vont se carbonater au contact de l'air humide pour redonner le carbonate de calcium et la silice d'origine. La vitesse de carbonatation secondaire dans l'épaisseur est à peu près d'1 cm par an.

Autres types de chaux

La norme définit également la chaux NHL-Z. Ce sont des NHL contenant jusqu'à 20 % d'éléments pouzzolaniques ou hydraulique (ciment portland). ajouté après cuisson. Les chaux pouzzolaniques sont hautement hydrauliques leur permettant de faire prise même dans l'eau. Elles sont hydrofuges et ne sont pas à conseiller en construction pour les murs car les rendant imperméables.

Chaux hydrauliques artificielles HL. Ce sont des CL bâtardées au ciment portland. Elle est très riche en silicates de calcium hydrauliques.

Chaux magnésiennes (CaOMgO). L'appellation normalisé est DL ("Dolomitic Lime") suivi d'un chiffre 85, 80 ou 70 indiquant leur taux de CaO + MgO. Elles contiennent du magnésium à raison de 5 % < MgO < 34 % pour les chaux magnésiennes et jusqu'à 34 % < MgO < 41,6 % pour les chaux dolomitiques. Elles sont obtenues par calcination de calcaire magnésien ou de dolomie. Après hydratation elles contiennent MgO ou Mg(OH)2.

Usage

Conditionnement et stockage

La chaux est aujourd'hui conditionnée en sac de 15 kg ou 25 kg. Le stockage doit être fait dans un endroit sec.

Mise en œuvre

Hydraulicité de la chaux

Le rapport des différents composants associés à l'argile et la part de Ca(OH)2 définit l'indice d'hydraulicité donné par un nombre indiquant la résistance à la compression (après avoir fait prise) en MPa ou en kg/cm². Plus la chaux est hydraulique, moins elle est perméable à l'air et à l'eau.

Type de chaux
Type de chaux pourcentage de chaux libre pourcentage d'argile indice d'hydraulicité Temps de prise en jours Résistance à la compression à 28 jours (kg/cm²)
CL 90 90 ~0 0 ‑ 0,1 > 30
DL 85 85 (CaOMgO) ~0 0 ‑ 0,1 > 30
CL 80 80 ~0 0 ‑ 0,1 > 30
DL 80 80 (CaOMgO) ~0 0 ‑ 0,1 > 30
CL 70 70 ~0 0 ‑ 0,1 > 30
DL 70 80 (CaOMgO) ~0 0 ‑ 0,1 > 30
NHL 2 50 5 ‑ 8 0,1 ‑ 0,16 10 ‑ 25 20 ‑ 70
NHL 3,5 8 ‑ 14 0,16 ‑ 0,3 10 ‑ 15 35 ‑ 100
NHL 5 15 14 ‑ 20 0,3 ‑ 0,4 2 ‑ 4 50 ‑ 150
chaux éminemment hydraulique, clinker < 2 20 ‑ 30 0,4 ‑ 0,5 <2 >150

La NHL 2 est utilisée lorsqu'on veut des mortiers très souples par exemple pour les enduits sur murs fragiles, en terre ou pierres tendres. Les NHL 3,5 et 5 sont surtout utilisées pour monter des murs, les enduits extérieurs, exécuter des chapes, poser du carrelage. Elles sont déconseillées sur supports fragiles car elle pourrait provoquer un arrachement du support. Elles peuvent également présenter une réaction non désirée avec le plâtre.

La chaux et ses dérivées

Aujourd'hui, soucieux de l'environnement, les entreprises trouvent dans la chaux une matière bien moins énergivore que d'autres liant. On utilise donc aujourd'hui de plus en plus la chaux dans les ciments, mortiers colle et autres applications.

En voici une liste:

  • Peinture à la chaux,
  • Bloc de chanvre;
  • Mortier colle
  • Enduit à base de chaux
  • Béton de chanvre
  • Béton préparée pour l'ingénierie civil
  • Jardinerie: dans les produits que l'on applique sur le gazon, ...

Vocabulaire

Notes et références

  1. a b et c Clément Louis Treussart. Mémoire sur les mortiers hydrauliques et sur les mortiers ordinaires. Chez Carillan-Goeury, 1829 Consulter en ligne
  2. Louis Noirot, Cours complet d'agriculture pratique, 1836, p. 770 en ligne
  3. http://www.fao.org/docrep/T0395F/T0395F01.htm

Voir aussi

Articles connexes

Liens externes