Ammoniac

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Ne doit pas être confondu avec Ammoniaque.
Ammoniac
Ammonia lone electron pair 2.svg3D ammoniac.PNG
Molécule d'ammoniac
Identification
Nom IUPAC azane
Synonymes nitrure d'hydrogène
esprit alcalin (volatil)[1]
No CAS 7664-41-7
No EINECS 231-635-3
SMILES
InChI
Apparence gaz comprimé liquéfié, incolore, d'odeur âcre[2].
Propriétés chimiques
Formule brute H3NNH3
Masse molaire[5] 17,0305 ± 0,0004 g/mol
H 17,76 %, N 82,25 %,
Moment dipolaire 1,4718 ± 0,0002 D [3]
Diamètre moléculaire 0,310 nm [4]
Propriétés physiques
fusion -77,7 °C [6]
ébullition -33,35 °C [6]
Solubilité dans l'eau à 20 °C : 540 g·l-1[2]
Paramètre de solubilité δ 33,4 MPa1/2 (25 °C)[7];
29,2 J1/2·cm-3/2 (25 °C)[4]
Masse volumique 0,7 g·cm-3 à -33 °C[2],
0,6813 (gaz)
d'auto-inflammation 651 °C[2]
Limites d’explosivité dans l’air Inférieure : 15,5 (Weiss, 1985)
Supérieure : 27 (Weiss, 1985)
Pression de vapeur saturante à 26 °C : 1 013 kPa[2]
Point critique 112,8 bar, 132,35 °C [9]
Thermochimie
S0gaz, 1 bar 192,77 J/mol•K
ΔfH0gaz -39,222 kJ·mol-1 (-273,15 °C)
-46,222 kJ·mol-1 (24,85 °C)[6]
ΔfH0liquide -40,2 kJ/mol
Δvap 23,33 kJ·mol-1 (1 atm, -33,33 °C);
19,86 kJ·mol-1 (1 atm, 25 °C)[10]
Cp 2 097,2 J·kg-1·K-1 (°C)

2 226,2 J·kg-1·K-1 (100 °C)

2 105,6 J·kg-1·K-1 (200 °C)[6]
PCI 317,1 kJ·mol-1 [11]
Propriétés électroniques
1re énergie d'ionisation 10,070 ± 0,020 eV (gaz)[12]
Cristallographie
Symbole de Pearson cP16\, [13]
Classe cristalline ou groupe d’espace P213 (n°198) [13]
Strukturbericht D1[13]
Structure type NH3 [13]
Propriétés optiques
Indice de réfraction \textit{n}_{D}^{25} 1,325 [4]
Précautions
Directive 67/548/EEC[14],[15]
Toxique
T
Dangereux pour l’environnement
N



Transport
268
   1005   
NFPA 704

Symbole NFPA 704

SIMDUT[16]
A : Gaz compriméB1 : Gaz inflammableD1A : Matière très toxique ayant des effets immédiats gravesE : Matière corrosive
A, B1, D1A, E,
SGH[17],[15]
SGH04 : GazSGH05 : CorrosifSGH06 : ToxiqueSGH09 : Danger pour le milieu aquatique
Danger
H221, H314, H331, H400, P210, P261, P273, P280, P305, P310, P338, P351,
Inhalation Les vapeurs sont très irritantes et corrosives
Peau Les solutions concentrées peuvent provoquer des brûlures
Yeux Dangereux, Irritation
Ingestion L'ingestion peut provoquer des brûlures de la bouche, langue, œsophage
Écotoxicologie
Seuil de l’odorat bas : 0,04 ppm
haut : 53 ppm[18]
Unités du SI et CNTP, sauf indication contraire.

L’ammoniac est un composé chimique, de formule NH3 (groupe générique des nitrures d'hydrogène). Dans les conditions de température et de pression ordinaire, c'est un gaz. Celui-ci est produit industriellement en quantité gigantesque par le procédé Haber-Bosch à partir de diazote et de dihydrogène (c'est un des composés le plus synthétisé au monde). Il sert à la synthèse de nombreux autres composés dont ceux de forts tonnages utilisés comme engrais. Ce gaz incolore est irritant, il possède une odeur piquante, il brûle les yeux et les poumons. Sur le plan chimique, c'est à la fois une base, un nucléophile, un ligand et un réducteur. Sa propriété basique est mise à profit pour produire quantité de sels d'ammonium. Ses propriétés de nucléophile en font un réactif de base en chimie organique pour la préparation des amides, des imides, etc. Ses propriétés de ligand sont connues depuis le début de la chimie de coordination et le fameux débat scientifique entre Sophus Mads Jørgensen et Alfred Werner qui conduisit au prix Nobel de ce dernier. Enfin, sa propriété de réducteur lui permet d'être industriellement oxydé en acide nitrique et en hydrazine notamment, deux produits industriels de forts tonnages. Biologiquement, l'ammoniac joue un rôle physiologique majeur tant à long terme, puisque c'est par son intermédiaire que l'azote est artificiellement incorporé par les plantes, qu'à court terme puisqu'il est impliqué dans l'élimination de l'azote du corps et la régulation du pH sanguin.

Sens ancien[modifier | modifier le code]

Le mot Ammoniac désignait autrefois[19] une substance médicinale (gomme) utilisée par les apothicaires, présentée comme suit en 1752 par le Dictionnaire français-Latin de Trévoux :

« Ammoniac ; une gomme dont on se sert en Pharmacie. Gummi ammoniacum. On nous l'apporte des Indes Orientales, & on croit qu'elle découle d'une plante umbellifére. Elle doit être en larmes séches, blanchâtres en dedans, un peu roussâtres en dehors, faciles à se fondre, gommeuses & résineuses, un peu amères, d'une odeur & d'un goût acre, tenant de l'ail. On en apporte aussi en masses remplies de petites larmes bien nettes & bien blanches. Cette gomme roussit en vieillissant ; Dioscoride & Pline en font mention. Dioscoride dit que l'ammoniac est le jus d'une espèce de férule qui croît en Afrique auprès de Cirène de Barbarie. La plante qui le porte, & sa racine, s'appellent Agafillis. Le bon ammoniac est haut en couleur, & n'est brouillé ni de raclure de bois, ni de sable, ni de pierres. Il a force petits grains comme l'encens, retire à l'odeur du castoreum, & est amer au goût (...) Pline appelle l'arbre dont il découle Métopion (...) L'ammoniac des Apoticaires est réduit en masse comme poix résine, au lieu d'être fraisé & menu comme de l'encens. On prétend qu'il servoit d'encens aux Anciens dans leurs sacrifices. Cette gomme entre dans plusieurs compositions ; elle est purgative, fondante, & résolutive, étant appliquée extérieurement. Gafer en tire un esprit & une huile, qui ont, à ce qu'il dit, de grandes vertus, lesquelles ne procédent que du sel volatile qu'elle contient. Mais comme il est mêlé d'un acide qui empêche ſon activité, il donne le moyen de séparer ces deux esprits, lesquels sont capables, selon lui, de produire des effets tout différens (...) Il y a un sel qu'on appelle aussi armoniac, ou ammoniac ».

Nomenclature[modifier | modifier le code]

D'après la nomenclature IUPAC, l'ammoniac est le plus simple des azanes[20], ou hydrures d'azote acycliques.

Production industrielle[modifier | modifier le code]

La production industrielle d’ammoniac de 1946 à 2007

Dans les conditions « ambiantes », il se présente sous la forme d'un gaz incolore (produisant une fumée de condensation à haute concentration) et dégageant une très désagréable odeur putride.

Réacteur chimique à haute pression et à parois d'acier utilisé pour la synthèse de l'ammoniac selon le procédé Haber-Bosch. Il a été construit en 1921 par BASF. En 2009, il est érigé à l'entrée de l'université de Karlsruhe en Allemagne

La production industrielle de l'ammoniac se fait essentiellement par synthèse directe à partir de dihydrogène et de diazote (procédé Haber-Bosch). Le diazote est fourni par l'air et le dihydrogène par vaporeformage du méthane (gaz naturel).

\mathrm{CH_4 + N_2 + 2\,H_2O \longrightarrow 2\,NH_3 + H_2 + CO_2}

Qui peut se décomposer en :

Production de dihydrogène par vaporeformage (voir l'article dihydrogène) :
\mathrm{CH_4 + H_2O \longrightarrow CO + 3\,H_2}
\mathrm{CO + H_2O \longrightarrow CO_2 + H_2}
Synthèse de l'ammoniac :
\mathrm{N_2 + 3H_2 \longrightarrow 2\,NH_3 \ \ \ \ \Delta H^0_{298} = -\,92,2\ kJ/mol}

Ancienne méthode de fabrication[modifier | modifier le code]

Anciennement, l'ammoniac était obtenu par distillation du purin et du fumier.

Au début du XXe siècle, différents procédés de synthèse ont été imaginés.
L'un d'entre eux se base sur l'hydrolyse de la cyanamide calcique, elle-même obtenue à partir du carbure de calcium.

\mathrm{CaO + 3\,C \longrightarrow CaC_2 + CO}
\mathrm{CaC_2 + N_2 \longrightarrow CaCN_2 + C}
\mathrm{CaCN_2 + 3\,H_2O \longrightarrow CaCO_3 + 2\,NH_3}

L'autre utilise l'hydrolyse du nitrure d'aluminium, lui-même produit par nitruration à haute température de l'alumine.

\mathrm{Al_2O_3 + N_2 + 3\,C \longrightarrow 2\,AlN + 3\,CO}
\mathrm{2\,AlN + 3\,H_2O \longrightarrow Al_2O_3 + 2\,NH_3}

Il faudra attendre 1913 pour voir apparaitre le procédé Haber-Bosch encore employé au XXIe siècle.

Propriétés de la molécule d'ammoniac[modifier | modifier le code]

L'ammoniac une molécule pyramidale à base trigonale : l'atome d'azote (N) est au sommet et les trois atomes d'hydrogène (H) occupent les trois coins (sommets) de la base triangulaire équilatérale. Plus précisément, l'atome d'azote « monte » et « descend » entre ce « sommet » de la pyramide et celui de la pyramide opposée, traversant ainsi la base triangulaire des atomes d'hydrogène. Cette « oscillation » s'effectue à une fréquence fondamentale de 24 GHz et a été mise à contribution dans les premières horloges atomiques.

Propriétés physicochimiques[modifier | modifier le code]

  • Odeur : très âcre et facilement reconnaissable, nocif par inhalation (mortel à hautes doses).
  • Inflammabilité et explosibilité : sous forte pression, l'ammoniac peut former un mélange explosif avec les huiles de lubrification, le mélange air-ammoniac s'enflamme et explose violemment.
  • Surchauffe de compression : la valeur élevée du rapport α=Cp/Cv = 1,335 à °C limite rapidement le taux de compression admissible du fait des hautes températures des vapeurs de refoulement, températures qui risqueraient au-delà d'une température de 120 °C une altération des huiles de lubrification et la formation d'un mélange détonant.
  • Corrosion des métaux, joints et lubrifiants : attaque le cuivre et tous ses alliages. C'est la raison pour laquelle les installations frigorifiques fonctionnant à l'ammoniac sont réalisées avec des tuyauteries en acier.
  • Miscibilité et solubilité : très soluble dans l'eau et non miscible avec les huiles naphténiques et les huiles de synthèse. Lorsqu'il est dissout dans l'eau, le gaz ammoniac forme une solution aqueuse de ce gaz, nommée l’ammoniaque, et donne lieu à un équilibre peu dissocié. L'ion ammonium NH4+ en solution comporte alors un atome d'hydrogène aux quatre sommets du tétraèdre. En absence d'espèces chimiques comportant des hydrogènes acides (l'eau et les alcools inclus), l'ammoniac peut également perdre un proton, H+, et donner l'ion amidure, NH2-, qui est une base forte.

Biochimie, Ammoniac dans l'environnement[modifier | modifier le code]

L'ammoniac dans le cycle de l'azote

L'azote est nécessaire à la synthèse des acides aminés, qui sont les éléments constitutifs des protéines. Il est très abondant (75 % du volume de l'atmosphère), mais très peu d'êtres vivants savent l'utiliser directement. Dans l'écosystème, l'ammoniac est en fait présent sous sa forme acide, l'ion ammonium (NH4+). Il constitue une importante source d'azote assimilable, via les plantes. En temps normal, dans l'environnement, il est transformé en nitrites puis en nitrates dans le cycle de l'azote.

Dans l'atmosphère, après l'air, la forme la plus présente de l'azote est le gaz NH3 (ammoniac). Il y est d'abord issu des engrais agricoles et des parcs d'engraissement des élevages industriels, suivis de la combustion de la biomasse fossile (charbon, pétrole, gaz naturel) ou renouvelable (dont via les incendies de forêt). Il est rabattu au sol par les pluies qu'il acidifie. Il acidifie ainsi le sol et contribue également à l'eutrophisation des milieux.

En Europe, avec l'EMEP (European Monitoring and Evaluation Programme) et en application de la convention de Genève dite convention sur la pollution atmosphérique transfrontière à longue distance et de son « protocole »[21] sur l'acidification, l'eutrophisation et l'ozone, l'acidité des pluies fait l'objet d'un suivi, centralisé pour la partie française par EcoLab (Laboratoire écologie fonctionnelle et environnement) , accueille le point focal national chargé de la modélisation des charges critiques atmosphériques)[22].

En France, l'acidité des pluies a diminué globalement grâce à une forte diminution des émissions de SO2, mais leur teneur en ammoniac n'a pas diminué alertait le ministère de l'environnement en 2011[23], alors que le protocole de la convention demande aux États signataires d'appliquer « les meilleures techniques disponibles pour prévenir et réduire les émissions d'ammoniac énumérées dans le document d'orientation V adopté par l'Organe exécutif à sa dix-septième session (décision 1999/1) et tous amendements y relatifs » notamment par de « bonnes pratiques agricoles respectueuses de l'environnement »[21]. Son article 8 stipule que les parties doivent élaborer des « stratégies visant à réduire davantage les émissions de soufre, d'oxydes d'azote, d'ammoniac et de composés organiques volatils en se fondant sur les charges critiques et les niveaux critiques ainsi que sur les progrès techniques, et amélioration de la modélisation de l'évaluation intégrée pour calculer la répartition optimisée au niveau international des réductions des émissions compte tenu de la nécessité d'éviter des coûts excessifs pour quelque Partie que ce soit. Une importance particulière devrait être accordée aux émissions imputables à l'agriculture et aux transports »[21].
pour la France, second pays européen le plus émetteur d’ammoniac derrière la fédération de Russie, le niveau de 1990 avait été évalué à 814 000 tonnes de gaz NH3 par an, et la convention de Genève imposait de descendre sous un « plafond » de 780 000 t/an, soit un effort de -4 % [24] alors qu'on demandait à la Slovaquie qui émettait 62 000t/an de réduire ses émissions de 37%

Au-delà de seuils qui diffèrent selon les espèces et leur environnement, l'excès d'ammoniac dans l'air ou dans un milieu est toxique et écotoxique.

Le gaz ammoniac (NH3) est source d'ammonium dans les précipitations (pluies, neiges, mais aussi rosée, brumes). De 1980 à 2008, les émissions de NH3 française n'ont diminué que de 4 % (source Citepa[23]). Le dépôts d’ammonium est indirectement acidifiant quand dans le sol il libère des ions H + par transformation en nitrites (NO2-) ou nitrates (NO3-), tout en eutrophisant le milieu où il s'est déposé [23] ; L'ammoniac n'étant pas la seule forme de l'azote en cause, l'étude de la pollution ammoniacale doit être faite dans le cadre d'une approche plus globale faisant le bilan des effets environnementaux en terme d'azote total.

Chez les plantes[modifier | modifier le code]

Les plantes terrestres, pour la plupart, exploitent l'ammoniac et d'autres déchets azotés incorporé dans le sol par les matières en décomposition. Quelques-unes sont parasites ou hémiparasites d'autres plantes. D'autres, comme les légumineuses fixatrices d'azote, bénéficient de relations symbiotiques avec les rhizobiums qui créent ammoniac à partir de l'azote atmosphérique[25], mais un excès d'ammoniac dans le sol ou même dans l'air peut en revanche avoir des effets négatifs sur de nombreuses espèces végétales[26], dès que les effets toxiques du NH3 dépassent la vitesse et capacité de désintoxication in vivo des plantes qui y sont exposées.

À partir des sources agricoles ou industrielles, l'ammoniac se dépose en moyenne assez rapidement (dans les premiers 4 à 5 km après avoir été émis par sa source). En contact avec les feuilles, le NH3 peut entraîner

  • des dommages foliaires visibles sur la végétation ;
  • un ralentissement de la croissance ;
  • une moindre productivité végétale ;
  • l'apparition de composés toxiques dans les tissus ;
  • une moindre tolérance et résilience face à la sécheresse et au gel ;
  • une moindre résistance aux parasites et insectes nuisibles ainsi qu'aux maladies causées par des micro-organismes (pathogènes) ;
  • une dégradation des associations symbiotiques ou mycorhizienne ;
  • un concurrence faussée entre espèces au détriment de la biodiversité et en faveur de quelques espèces ubiquistes ou résistantes.

Avant de retomber au sol, une partie du NH3 anthropique ou naturel aura déjà été converti dans l'atmosphère en nanoparticules et en aérosols de NH4+ (ammonium) qui eux posent un problème à des échelle au moins régionales ; En effet selon les données scientifiques disponibles, la charge critique à ne pas dépasser pour les milieux les plus vulnérables (landes, tourbières, zones humides oligotrophes, et certains milieux abritant des cryptogames) serait de 5 à 10 kg d'azote total par hectare (charge par an en dépôt sec et/ou humide combinée de tous les espèces de l'azote atmosphériques). Les forêts semblent pouvoir supporter des charges plus élevées (de 10-20 kg/ha/an), plus ou moins selon les conditions édaphiques, mais la plupart des cryptogames (lichens, bryophytes, hépatiques) qu'elles hébergent sont néanmoins très vulnérables au NH3 et à d'autres eutrophisants azotés.

Ces seuils critiques sont très fréquemment dépassée dans les régions industrielles et d'agriculture intensive (un hectare cultivé peut perdre jusqu'à 40 kg/an d'azote sous forme d'ammoniac[27]).

Des synergies ou effets additionnels conjoints avec d'autres polluants (ozone et CO2 notamment qui semblent en augmentation presque partout) sont fortement suspectées mais avec des mécanismes toxicologiques et écotoxicologiques encore mal comprises.

Chez l'animal[modifier | modifier le code]

Chez l'animal, l'ammoniac joue un rôle à la fois dans la physiologie normale et anormale. Il est biosynthétisé travers le métabolisme des acides aminés normaux, mais est toxique (plus ou moins selon les espèces et la durée d'exposition) à des taux élevés[28].

Chez les animaux aquatiques, l'ammoniac est directement évacué dans le milieu (ammoniotélisme). Chez les animaux terrestres, le foie transforme l'ammoniac en urée par une série de réactions faisant partie du cycle de l'urée. Certains, comme les oiseaux et les reptiles, l'évacuent sous forme d'acide urique.

Un dysfonctionnement hépatique, tels que celui observé chez l'homme avec la cirrhose, peut conduire à des quantités élevées d'ammoniac dans le sang (hyperammoniémie). De même, le fonctionnement défectueux des enzymes responsables de cycle de l'urée, tels que l'ornithine transcarbamylase, conduit à une hyperammoniémie. Cette hyperammoniémie contribue à la confusion mentale et peut conduire au coma de l'encéphalopathie hépatique, ainsi qu'à des maladies neurologiques (fréquentes chez les personnes présentant des anomalies du cycle de l'urée et des aciduries organiques[29]).

L'ammoniac participe chez les animaux aux équilibres acide-base normaux. Après la formation d'ammonium à partir de glutamine, l'α-cétoglutarate peut être décomposé en produisant deux molécules de bicarbonate qui deviennent disponibles comme « tampon » pour les acides alimentaires. L'ammonium est excrété dans les urines, entraînant une perte nette d'acide.

L'ammoniac peut se diffuser à travers les tubules rénaux, s'y combiner avec un ion hydrogène, et permettre ainsi l'excrétion supplémentaire d'acide [30].

Chez l'Homme[modifier | modifier le code]

L'ammoniac inhalé est toxique au-delà d'un certain seuil.

Dans les régions cultivées, sa première source est l'engrais azoté (« de 0 à 90 % de la quantité totale d’azote ammoniacal apportée peut s'évaporer » sous forme d'ammoniac)[27]. En Europe, l'ammoniac volatilisé perdu par les engrais agricole (minéraux et organiques) est après la lixiviation le second poste de pertes d’azote. Jusqu'à 20 % des apports d’engrais minéraux (selon les formes, le sol et conditions d'apport) et jusqu'à 70% de la fraction ammoniacale des lisiers peuvent être perdus dans l'atmosphère, en quelques jours à quelques semaines après épandage[31], avec jusqu'à 40 kg/an/hectare[27].

Une directive européenne a fixé des seuils d'émission à ne pas dépasser (plafonds) pour réduire les émissions européennes de NH3 à horizon 2010 puis 2020. Le NH3 est l'un des principaux précurseurs de particules fines dont les effets sanitaires négatifs sont largement démontrés[27].

Par ailleurs, en pathologie humaine, une augmentation de l'ammoniac sanguin est signe de dysfonctionnement du foie. En effet l'ammoniac issu de la dégradation des acides aminés est transformé en urée dans le foie, afin d'être éliminé de l'organisme (détoxication) ; toute dégradation de fonctionnement du foie entraîne donc une augmentation du taux d'ammoniac dans le sang.

Utilisations[modifier | modifier le code]

Sous forme gazeuse, l'ammoniac est utilisé par l'industrie pour la fabrication d'engrais, d'explosifs et de polymères. L'ammoniac, qui comporte 82 % d'azote, sert aussi d'engrais azoté ; il est injecté directement dans le sol sous forme d'ammoniac liquéfié sous pression.

On le trouve aussi dans la cigarette. Les fabricants l'ajoutent à la préparation du tabac en raison de sa faculté à faciliter et augmenter l'absorption de la nicotine, composé addictif du tabac.

Réfrigération[modifier | modifier le code]

L'ammoniac est utilisé comme fluide frigorigène et est désigné par la référence R717.

  • La lettre R signifie réfrigérant.
  • 7 : les fluides frigorigènes d'origine inorganique sont répertoriés dans la série des 700. Le chiffre des centaines est donc un 7.
  • 17 : le chiffre des dizaines et celui des unités ici représentent la masse molaire de la molécule à savoir M(NH3)=17,0 g.mol-1.

L'ammoniac est très utilisé dans le secteur du froid industriel dans les installations à puissance importante (plusieurs centaines de kW). En raison de sa toxicité, il doit être confiné en salle des machines.

Il reste néanmoins un fluide frigorigène ayant des capacités thermodynamiques et thermiques excellentes malgré les contraintes qui lui sont liées.

Carburant[modifier | modifier le code]

L'ammoniac est un vecteur énergétique car il permet de transporter de l'hydrogène sous une forme dont le stockage est relativement simple. Il brûle difficilement dans l'air mais la combustion est facilitée par une décomposition partielle par passage sur un catalyseur.

En 1872, le docteur Émile Lamm, dentiste français émigré aux États-Unis, dépose plusieurs brevets sur un moteur à l'ammoniac et met ce système en application sur une ligne des tramways de La Nouvelle-Orléans.

Pendant la Seconde Guerre mondiale, des véhicules (notamment des autocars en Belgique) ont fonctionné avec de l'ammoniac. Dans les années 1960, l'armée américaine s'y est intéressée dans le cadre du concept MED (Mobile Energy Depot) qui visait à produire directement les carburants sur le champ de bataille à partir de réacteurs nucléaires transportables[32],[33].

Au XXIe siècle, l'ammoniac fait l'objet de nouvelles études pour des moteurs classiques sans émissions de CO2 et pour le fonctionnement de piles à combustible.

Détection des fuites[modifier | modifier le code]

Du fait de son odeur particulière, une fuite d'ammoniac est facilement identifiable à l'odorat. Techniquement, on utilise une baguette soufrée, qui enflammée au voisinage d'émanation d'ammoniac produit une fumée blanche dense permettant ainsi de localiser l'origine de la fuite. La recherche de fuite sur une installation ammoniac ne peut se faire qu'à l'aide d'un appareil respiratoire isolant du fait de sa très forte toxicité.

Toxicologie[modifier | modifier le code]

Principaux symptômes de l'ammoniémie

Au-delà d'une certaine dose, par inhalation, ou à la suite d'une production par l'organisme lui-même (intoxication endogène par fonctionnement anormal du rein, du foie, des muscles, ou de l'intestin), l'ammoniac est toxique, induisant[34] :

  • un altération des astrocytes, en modifiant les protéines astrocytaires (Glial fibrillary acidic protein)
  • une altération des échanges ioniques cellulaires
  • une altération des secrétions des NT

L'origine d'une hyperammoniémie peut être directe (éventuellement génétiquement acquise) :

* une acidose (le plus souvent, production de NH4 associée à un défaut d'élimination rénale)

L'origine peut aussi être indirecte[34], avec


Le taux sanguin normal d'ammoniac est 11 à 45 µmol·l-1. Au-delà de 50 µmol·l-1, on peut parler d'hyperammoniémie (quelques centaines à plus de 1 000 µmol·l-1) peut être déclenchée par un changement important dans l'alimentation, un stress important, une infection, et se traduit par des douleurs abdominales, une hépatomégalie, cytolyse, IHC avec troubles digestif (anorexie, un dégoût pour les mets protéinés en particulier viande et poisson), des troubles neuropsychologiques (asthénie, somnolence…), troubles de l'humeur du comportement et de la personnalité (irritabilité…), de l'élocution, hallucinations, crises ataxiques ou convulsives puis coma hyperammoniémique). Ces symptômes n'étant pas spécifiques, le diagnostic peut être difficile à poser. Chez l'adulte, il peut être suggéré par un retard mental et/ou psychomoteur, des troubles du comportement, une microcéphalie avec atrophie cérébrale, un régime végétarien avec aversion pour les protéines, un syndrome de Reye[34].

L’ammoniac étant labile, le prélèvement sanguin (au moins 1 ml de sérum en tube hépariné ou avec EDTA) doit être fait si possible lors d'une crise et rapidement transporté dans de la glace (en moins de 15 min) puis centrifugé et décanté le plus vite possible par un laboratoire prévenu d'avance de son arrivée. Il peut être conservé 2 heures à +°C ou 48 heures à -20 °C[34]. Le sang veineux en contient naturellement près de 2 fois plus que le sang artériel ou capillaire, et le nouveau-né en produit naturellement plus (34102 µmol·l-1 pour le sang veineux, et 50 à 128 µmol·l-1 pour le sang artériel pour un nouveau-né de 3 jours) que l'enfant ou l'adulte[34].

Le diagnostic différentiel doit faire éliminer[34] ;

Impact environnemental[modifier | modifier le code]

Les impacts toxicologiques de l'ammoniac semblent assez bien connus, mais ses impacts écotoxicologiques, autres que liés à son caractère basique ou eutrophisant sont moins bien étudiés.

On sait que :

  • Les quantités d'ammoniac rejetées dans l'atmosphère en font l'un des principaux responsables de l'acidification de l'eau et des sols[35], ainsi qu'un facteur favorisant les pluies acides[36]. En France et en Europe, le secteur de l'agriculture est à l'origine de 95 % des émissions d'ammoniac[37]. 80 % des émissions proviennent de la volatilisation des déjections animales ; les 20 % restants sont principalement liés à la production des engrais azotés et à leur épandage, difficile à adapter aux aléas climatiques[37].
  • Il s'agit du principal responsable de l'eutrophisation des milieux aquatiques[35].
  • Avec un GWP (global warming potential) de 0[38], l’ammoniac est un fluide frigorigène sans effet sur le réchauffement climatique, contrairement aux fluides frigorigènes type HFC couramment utilisés dans les climatiseurs et pompes à chaleur dont le GWP peut varier de 1 430 (R134a)[38] à 3 900 (R404A)[38].
  • De même, avec un ODP (potentiel de déplétion ozonique) de 0[39], l'ammoniac est un fluide frigorigène sans effet sur la couche d'ozone, contrairement aux fluides frigorigènes type HCFC dont le plus connu est le R22 encore courant dans les systèmes de climatisations anciens.
  • Dans l'eau, bien que considéré comme non-toxiques aux doses où il est aujourd'hui présent, il semble discrètement affecter le métabolisme de tous téléostéens (l'infra-classe des Teleostei qui regroupe l'écrasante majorité des espèces de poissons actuels, soit environ 23 600 espèces actuellement connues), par exemple en diminuant les réflexes ce ces poissons [40],[41].
  • Une certaine toxicité est également constatée chez des animaux primitifs comme les amphipodes [42]

En France, estimées à 636 000 tonnes en 2012, les émissions d’ammoniac atmosphérique baissent en moyenne de 0,5 % par an depuis 1980. Le protocole de Göteborg fixe un engagement de réduction des émissions d'ammoniac de 4 % en 2020 par rapport aux émissions de 2005, soit 636 000 tonnes/an[43].

Phrases de risque et conseils de prudence selon l'INRS[modifier | modifier le code]

R10 – Inflammable.

R23 – Toxique par inhalation.

R34 – Provoque des brûlures.

R50 – Très toxique pour les organismes aquatiques.

S9 – Conserver le récipient dans un endroit bien ventilé.

S16 – Conserver à l’écart de toute flamme ou source d’étincelle. Ne pas fumer.

S26 – En cas de contact avec les yeux laver immédiatement et abondamment avec de l’eau et consulter un spécialiste.

S36/37/39 – Porter un vêtement de protection approprié, des gants et un appareil de protection des yeux/du visage.

S45 – En cas d’accident ou de malaise, consulter immédiatement un médecin (si possible lui montrer l’étiquette).

S61 – Ne pas rejeter dans l’environnement. Consulter les instructions spéciales / la fiche de données de sécurité.

Référence ONU pour le transport des matières dangereuses[modifier | modifier le code]

  • Classe 2
    • numéros :
      • 1005 (ammoniac anhydride)
      • 3318 (ammoniac en solution aqueuse de densité inférieure à 0,880 à 15 °C contenant plus de 50 % d'ammoniac)
      • 2073 (ammoniac en solution aqueuse de densité inférieure à 0,880 à 15 °C contenant plus de 35 % mais au maximum 50 % d'ammoniac)
  • Classe 8
    • numéro 2672 (ammoniac en solution aqueuse de densité comprise entre 0,880 et 0,957 à 15 °C contenant plus de 10 % mais au maximum 35 % d'ammoniac)

Notes et références[modifier | modifier le code]

  1. P.H.Nysten, Dictionnaire de médecine, de chirurgie, de pharmacie, des sciences accessoires et de l'art vétérinaire, Société typographique belge,‎ 1840p.345
  2. a, b, c, d et e AMMONIAC (ANHYDRE), fiche de sécurité du Programme International sur la Sécurité des Substances Chimiques, consultée le 9 mai 2009
  3. (en) David R. Lide, Handbook of chemistry and physics, CRC,‎ 16 juin 2008, 89e éd., 2736 p. (ISBN 142006679X et 978-1420066791), p. 9-50
  4. a, b et c (en) Yitzhak Marcus, The Properties of Solvents, vol. 4, England, John Wiley & Sons Ltd,‎ 1999, 239 p. (ISBN 0-471-98369-1)
  5. Masse molaire calculée d’après « Atomic weights of the elements 2007 », sur www.chem.qmul.ac.uk.
  6. a, b, c et d (en) T.A. Czuppon et al., Kirk-Othmer encyclopedia of chemical technology 4th ed. : Ammonia, vol. 2, John Wiley & Sons.
  7. (en) James E. Mark, Physical Properties of Polymer Handbook, Springer,‎ 2007, 2e éd., 1076 p. (ISBN 0387690026, lire en ligne), p. 294
  8. a et b (en) Robert H. Perry et Donald W. Green, Perry's Chemical Engineers' Handbook, USA, McGraw-Hill,‎ 1997, 7e éd., 2400 p. (ISBN 0-07-049841-5), p. 2-50
  9. « Properties of Various Gases », sur flexwareinc.com (consulté le 12 avril 2010)
  10. (en) David R. Lide, CRC Handbook of Chemistry and Physics, CRC Press Inc,‎ 2009, 90e éd., Relié, 2804 p. (ISBN 978-1-420-09084-0)
  11. Magalie ROY-AUBERGER, Pierre MARION, Nicolas BOUDET, Gazéification du charbon, ed. Techniques de l'ingénieur, référence J5200, 10 déc. 2009, p. 4
  12. (en) David R. Lide, Handbook of chemistry and physics, CRC,‎ 2008, 89e éd., 2736 p. (ISBN 9781420066791), p. 10-205
  13. a, b, c et d « The Ammonia (NH3, D1) Structure », sur http://cst-www.nrl.navy.mil/ (consulté le 17 décembre 2009)
  14. « ESIS » (consulté le 6 décembre 2008)
  15. a et b SIGMA-ALDRICH
  16. « Ammoniac » dans la base de données de produits chimiques Reptox de la CSST (organisme québécois responsable de la sécurité et de la santé au travail), consulté le 25 avril 2009
  17. Numéro index 007-001-00-5 dans le tableau 3.1 de l'annexe VI du règlement CE N° 1272/2008 (16 décembre 2008)
  18. « Ammonia », sur hazmap.nlm.nih.gov (consulté le 14 novembre 2009)
  19. Dictionnaire français-latin de Trévoux ; Dictionnaire universel Francois et latin : Contenant La Signification Et La Definition tant des mots de l'une & de l'autre Langue, avec leurs differens usages, que des termes propres de chaque État & de chaque Profession, Édité à Paris, par la compagnie des libraires associés en 1752 (numérisé en Livre numérique Google)
  20. Référence IUPAC
  21. a, b et c ONU (2000), Protocole à la convention de 1979 sur la pollution atmosphérique transfrontière à longue distance, relatif à la réduction de l'acidification, de l'eutrophisation et de l'ozone troposphérique  ; PDF, 74 p
  22. ECOLAB Ecolab
  23. a, b et c CGDD (2011) La qualité des eaux de pluie : acidité en baisse mais pas de progrès pour les dépôts d’azote ; ministère de l'Écologie, du Développement durable, des Transports et du Logement, Service de l'Observation et des statistiques ; Le point sur, n° 88, juin 2011, PDF, 4 pages
  24. voir tableau p24/74 du protocole de Genève de 2000
  25. Adjei, M.B.; Quesenberry, K.H. et Chamblis, C.G. (juin 2002). "Nitrogen Fixation and Inoculation of Forage Legumes". University of Florida IFAS Extension
  26. Krupa SV. (2003), Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review. Environmental Pollution 124: 179–221 ([résumé])
  27. a, b, c et d Comifer/Groupe Azote Calcul de la fertilisation azotée, Groupe azote Comifer, avril 2011, PDF, 92 p
  28. "PubChem Substance Summary", consulté 2009-07-07.
  29. Zschocke, Johannes, et Georg Hoffman (2004). Vademecum Metabolism. Friedrichsdorf, Allemagne : Milupa GmbH.
  30. Rose, Burton, et Helmut Rennke (1994). Renal Pathophysiology. Baltimore, Maryland: Williams & Wilkins. ISBN 0-683-07354-0.
  31. Nicolardot B, Mary B, Houots S, Recous S (1997), La dynamique de l'azote dans les sols cultivés. in Maîtrise de l'azote dans les agrosystèmes - Annales colloques INRA 83 - Reims (France) 19-20 nov. 1996 - INRA Ed., 87-103.
  32. http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=4307142
  33. C.G. Garabedian, J.H. Johnson The theory of operation of an ammonia burning internal combustion engine US Army tank automotive center, Warren Michigan 1963
  34. a, b, c, d, e et f Gaspard Beaune, Les hyperammoniémies Présentation ppt - Laboratoire de biochimie CHRA- Jeudi 26 septembre 2002, consultée 2011-10-04
  35. a et b Source : Ifen
  36. Source : Ademe
  37. a et b Source : Commission Européenne
  38. a, b et c International Institute of refrigeration Ammonia as a Refrigerant, 3e édition, Dr A.B. Pearson, 2008
  39. Michèle Mondot, Ahmed Bensafi, Christophe Marvillet L'après R22 - Guide des fluides frigorigènes pour la climatisation, Publications du CETIAT, 2002
  40. McKenzie, D.J., Shingle, A., Claireaux, G. & Domenici, P.(2009). Sub-lethal concentrations of ammonia impair performanceof the teleost fast-escape response. Physiol.Biochem. Zool. 82, 353–362
  41. McKenzie, DJ, de bardeaux, A., Claireaux, G. & Domenici, P.(2009)
  42. Prenter, J., MacNeil, C., Dicka, J.T.A., Riddella, G.E. & Dunn, A.M. (2004). Lethal and sublethal toxicity of ammoniato native, invasive, and parasitised freshwater amphipods.Water Res. 38, 2847–2850.
  43. Ammoniac Centre interprofessionnel technique d'études de la pollution atmosphérique (CITEPA)

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]