Alimentation sans interruption

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir ASI et UPS.

Une alimentation sans interruption (ASI), alimentation statique sans coupure (ASSC)[1],[2] (en anglais Uninterruptible power supply ou UPS) ou, du nom d'un de ses composants, onduleur, est un dispositif de l'électronique de puissance qui permet de fournir à un système électrique ou électronique une alimentation électrique stable et dépourvue de coupure ou de micro-coupure, quoi qu'il se produise sur le réseau électrique.

Constitution[modifier | modifier le code]

Elle est constituée de la mise en cascade :

  • d'un convertisseur de courant alternatif (venant de la prise) en courant continu (pour charger la batterie) appelé redresseur,
  • d'un dispositif de stockage de l'énergie (batterie d'accumulateurs, supercondensateurs, volant d'inertie, etc.),
  • d'un convertisseur produisant à nouveau du courant alternatif (pour la sortie de l'appareil), appelé onduleur ou « mutateur » fonctionnant à fréquence fixe,
  • accessoirement d'une source d’énergie externe (par exemple un groupe électrogène) si l’interruption de l'alimentation électrique se prolonge.

Le terme onduleur est fréquemment utilisé par abus de langage pour désigner l'ensemble du dispositif. C'est le cas, par exemple, pour les onduleurs que l'on intercale entre le réseau de distribution et les serveurs d'un centre informatique.

Stockage[modifier | modifier le code]

Le stockage d'énergie peut être fait sous différentes formes :

  • sous forme chimique (batterie d'accumulateurs), on parle de BESS pour Battery Energy Storage System ;
  • sous forme électrique (dans des supercondensateurs ou des bobines supraconductrices), on parle alors de « SMES » pour Superconducting Magnetic Energy Storage ;
  • sous forme mécanique / énergie cinétique (utilisation d'une machine synchrone raccordée au réseau prenant le relais en cas de coupure). On parle alors d'accumulateur cinétique. On trouve sur la marché des accumulateur cinétiques à axe horizontal ou vertical. Les accumulateurs à axe vertical font souvent appel à la sustentation magnétique et offrent généralement une autonomie plus élevée que ceux à axe horizontal.
  • sous forme de gaz comprimé.

Cependant ce stockage ne peut fonctionner que pendant un temps limité et l'alimentation SANS interruption, nécessite une source d’énergie de plus longue durée tel qu'un groupe électrogène. Le groupe est démarré dès que la durée d'interruption de l'alimentation électrique devient critique, par rapport aux capacités de stockage restantes, à la consommation électrique et au temps de démarrage du groupe électrogène.

Il est important de souligner que la nature du stockage utilisé par un onduleur ou ASI ne change pas la nature de l'onduleur. Comme précisé ci-dessous, un onduleur statique qui utilise un accumulateur cinétique comme réserve d'énergie n'en devient pas pour autant une ASI dynamique; pas plus qu'un onduleur dynamique qui utilise une batterie ne devient un onduleur statique.

Génération[modifier | modifier le code]

Le courant issu de ces réserves d'énergie est continu. Soit immédiatement (batteries, accumulateurs chimiques ou électriques), soit via un étage redresseur pour les accumulateurs cinétiques (la fréquence du courant alternatif généré naturellement par ces derniers varie avec la décharge de l'accumulateur et ne peut donc servir directement à alimenter une charge en 50 Hz ou 60 Hz).

Deux technologies sont présentes sur le marché pour la partie onduleur ou mutateur.

  1. La technologie statique (s'appliquant aux onduleurs statiques) dans laquelle la tension alternative de sortie de l'ASI est produite à partir du courant continu issu de la réserve d'énergie par le biais de transistors commutés à haute fréquence pour reconstituer un signal sinusoïdal à partir du signal continu.
  2. La technologie dynamique (s'appliquant aux onduleurs dynamiques ou « rotary UPS ») dans laquelle une machine synchrone est utilisée (comme un alternateur) pour générer le courant alternatif de sortie.

Un premier étage à base de thyristor à basse fréquence (50 Hz ou 60 Hz) peut être utilisé pour générer un signal alternatif carré qui est ensuite transformé en sinusoïde par la machine synchrone. Il s'agit alors de technologie « hybride ».

Chaque technologie a des avantages et des inconvénients (techniques et financiers) propres qui aident à effectuer le choix pour une application donnée. On observe par exemple[3] que la part de marché des onduleurs dynamiques est plus importante sur les applications de forte puissance telles que les gros centres informatiques (plusieurs milliers de m2).

Il faut souligner que le choix d'une technologie pour l'étage onduleur/mutateur (statique ou dynamique) ne conditionne pas le choix du type de réserve d'énergie. On peut ainsi avoir un onduleur dynamique avec comme réserve d'énergie des batteries chimiques. Ou inversement retenir un onduleur statique avec comme réserve d'énergie un (ou plusieurs) accumulateur cinétique. Dans ce dernier cas certains utilisent parfois l'appellation d'onduleur dynamique ou « rotary UPS ». Il s'agit alors d'une appellation erronée car elle introduit une confusion entre la nature de la réserve d'énergie et la technlogie d'onduleur utilisée.

Topologies[modifier | modifier le code]

Bien qu'il existe sur le marché plusieurs types d'ASI, différents du point de vue de leur configuration ou de leur architecture, on parvient généralement à les classer parmi les trois topologies suivantes : en attente passive (offline ou passive standby), en interaction avec le réseau (line-interactive) et à double conversion (online ou double conversion). Ces expressions désignent l'état de l'onduleur lors du fonctionnement normal du réseau électrique (mode normal de l'ASI).
Quelle que soit sa topologie, l'ASI fonctionne selon le même principe: lorsque la tension du réseau d'entrée sort des tolérances spécifiées de l'ASI, ou lors d'une défaillance de ce réseau, l'ASI se met en mode autonome. Ce mode est maintenu pendant toute la durée d'autonomie de la batterie ou, suivant le cas, jusqu'à ce que le réseau revienne dans les tolérances spécifiées, ce qui entraîne un retour au mode normal.

En attente passive[modifier | modifier le code]

ASI fonctionnant en attente passive
  • En mode normal, l'onduleur est en attente passive, isolé de la charge par l'interrupteur d'ASI. La charge est branchée directement au réseau, ou par l'entremise d'un filtre ou conditionneur qui élimine certaines perturbations électriques. Le chargeur, branché sur le réseau, assure la recharge de la batterie.
  • En mode autonome, l'alimentation de la charge est transférée du réseau vers l'onduleur via l'interrupteur d'ASI. Le temps de permutation de l'interrupteur, généralement très court, est de l'ordre de 10 ms.

Simple et économique, cette configuration n'offre qu'une protection rudimentaire. La charge n'est pas véritablement isolée par rapport au réseau électrique et la régulation de fréquence y est inexistante. La régulation de tension, limitée par la capacité de conditionnement d’un simple filtre en ligne, peut être sensiblement améliorée grâce à l’ajout d’un transformateur ferrorésonnant ou à commutation de prise automatique. Par ailleurs, le temps de basculement de l'interrupteur, bien que très rapide, peut être inacceptable pour certaines installations sensibles. Ces inconvénients font que ce type d'ASI n'est utilisable qu'avec de faibles puissances (moins de 2 kVA) et pour des appareils tolérant assez bien le risque.

En interaction avec le réseau[modifier | modifier le code]

ASI fonctionnant en interaction avec le réseau
  • En mode normal, la charge est alimentée par le réseau conditionné constitué par l'onduleur en parallèle (en interaction) avec le réseau. L'onduleur, à fonctionnement réversible, conditionne la puissance de sortie et assure la recharge de la batterie.
  • En mode autonome, l'onduleur et la batterie assurent l'alimentation de la charge. Le contacteur de puissance coupe l'alimentation d'entrée pour éviter un retour d'alimentation depuis l'onduleur.

L'interaction avec le réseau permet une certaine régulation de la tension de sortie mais elle reste moins efficace que celle effectuée sur l'ASI à double conversion.
Comme l'ASI à attente passive, il n'y a pas véritablement d'isolation entre la charge et le réseau électrique, ni de régulation de fréquence de sortie. Pour ces raisons, cette configuration reste marginale dans le domaine des moyennes et fortes puissances.

À double conversion[modifier | modifier le code]

ASI fonctionnant en double conversion
  • En mode normal, l'onduleur est en série entre le réseau et la charge. La puissance fournie à la charge transite en permanence par le duo chargeur-onduleur qui réalise une double conversion alternatif/continu - continu/alternatif.
  • En mode autonome, l'onduleur et la batterie assurent l'alimentation de la charge.

Cette configuration est la plus coûteuse, mais aussi la plus complète au point de vue de la protection de la charge. L'onduleur régénère en permanence la tension fournie par le réseau, ce qui permet une régulation précise de la tension et de la fréquence de sortie (il y a même possibilité de fonctionner en convertisseur de fréquence, lorsque cela est prévu). De plus, l'isolement de la charge par rapport au réseau élimine les reports des perturbations du réseau électrique sur la sortie de l'ASI. Par ailleurs, le passage du mode normal au mode autonome s’effectue instantanément, sans aucun délai de permutation.

L’ASI comporte un contacteur statique de dérivation pour rediriger la charge vers le réseau (ou vers une source auxiliaire constituée par exemple d'une génératrice diesel), dans l’éventualité d’une défaillance de l’ASI ou avant la fin d’autonomie de ses batteries. L’ASI étant synchronisée avec le réseau de dérivation, ce transfert s’effectue sans coupure.

Grâce à ses nombreux avantages, l'ASI à double conversion est un excellent choix pour protéger les applications critiques dans les moyennes et grosses puissances (10 kVA et plus).

Applications[modifier | modifier le code]

Les applications sont très diversifiées en termes de puissance : elles vont du simple onduleur d'un ordinateur particulier (éviter la perte de données), au système de secours de centrale nucléaire (éviter l'emballement du cœur), en passant par l'alimentation des réseaux critiques nécessitant une continuité dans l'alimentation électrique (blocs opératoires des hôpitaux, etc.).

Fabricants[modifier | modifier le code]

Notes et références[modifier | modifier le code]

  1. Les différentes topologies des Alimentations Statiques Sans Coupure, sur le site kelvin-emtech.com
  2. ASSC (Alimentation statique sans coupure), sur le site oldham.ca
  3. article EC&M de janvier 2008

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :

Article connexe[modifier | modifier le code]

Liens externes[modifier | modifier le code]