Algorithme de Lehmer-Schur

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

L'algorithme de Lehmer-Schur (dont le nom provient de Derrick Lehmer et d'Issai Schur) permet de trouver les zéros d'une fonction holomorphe définie sur un rectangle du plan complexe. Il étend la méthode de dichotomie, utilisée en dimension un.

Le rectangle est divisé en quatre sous-rectangles de même taille. On calcule l'indice du bord de chaque sous-rectangle, en utilisant le principe de l'argument. L'indice donne le nombre de zéros, comptés avec multiplicité, à l'intérieur de chaque sous-rectangle.

L'algorithme est ensuite appliqué récursivement à chacun des sous-rectangles dont l'indice est non-nul. La récursion prend fin lorsque les rectangles sont suffisamment petits pour que l'approximation obtenue sur les zéros soit assez précise ou lorsqu'on peut appliquer un autre algorithme pour raffiner l'approximation trouvée.

Sources[modifier | modifier le code]