Écotoxicologie

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

L'écotoxicologie est une discipline scientifique récente située à l'interface entre l'écologie et la toxicologie, née de la reconnaissance du fait qu'un nombre croissant de toxines (polluants) ont contaminé et continuent à contaminer toute ou partie de la biosphère et pour certains interagissent entre eux et avec le Vivant.

Cette discipline scientifique étudie le comportement et les effets d'agents « polluants » sur les écosystèmes, qu'il s'agisse d’agents d’origine artificielle (incluant médicaments, perturbateurs endocriniens, etc.) ou d'agents naturels dont l’homme modifie la répartition et/ou les cycles dans les différents compartiments de la biosphère.

Parmi les premiers objectifs de l'écotoxicologie figurent la connaissance et la prévention, mais il est aussi de plus en plus demandé aux écotoxicologues d'aussi prévoir (prospective) les effets de pollutions, en nature, intensité et durée, et les risques associés.

Le toxicologue cherche donc à caractériser le risque écotoxicologique via :

  • le danger d'une substance, évalué par des études de toxicité (aiguë ou chronique, intrinsèque ou en cocktails, etc.) des produits et l'établissement de seuils relatifs au-delà desquels une substance a un effet toxique ou en deçà desquels elle est inoffensive)
  • la probabilité d’exposition à cette substance, qui dépend de ses propriétés physiques et chimiques, des caractéristiques de l'environnement, de la durée d'exposition (continu, occasionnel), la voie d'exposition (percutanée, en ingestion, par inhalation…) et l'individu exposé (sexe, âge, vulnérabilité particulière, etc.).

Comme les sensibilités aux toxiques diffèrent selon les espèces et les écosystèmes, les seuils établis, recherchés ou considérés par l'écotoxicologie (indices d'évaluation et seuils de sécurité) de même que les biomarqueurs peuvent fortement différer de ceux qui ont été établis par les toxicologues pour l'être humain.

À l'interface entre la toxicologie et l'écotoxicologie se trouvent le domaine commun de la santé environnementale, où les agrosystèmes et l'élevage tiennent une place particulière, notamment pour certaines zoonoses, maladies ou intoxications ou phénomènes d'antibiorésistance susceptibles de toucher à la fois l'Homme et l'animal, domaine pour l'étude commune duquel l'OMS et l'OIE se sont rapprochés. On y trouve aussi de nombreux biomarqueurs de stress écologique et de toxicité, qui sont communs à l'homme et à l'animal, voire partagés avec les plantes ou champignons[1].

Éléments de définition[modifier | modifier le code]

L'écotoxicologie - comme son nom l'indique - tente de combiner deux sujets très différents :

  • l'écologie ;
  • et la toxicologie est "l'étude des effets nuisibles des produits chimiques sur les écosystèmes" (Walker et al, 1996).

François Ramade la définit comme science « dont l'objet est l'étude des polluants toxiques dans les écosystèmes et la biosphère tout entière »[2]

Histoire de l'écotoxicologie[modifier | modifier le code]

L'écotoxicologie est une jeune discipline, apparue dans les années 1970[3] après la toxicologie et reprenant ses méthodes, mais en les élargissant au champ de l'environnement des humains et de la biosphère tout entière.

Elle est issue de la « toxicologie de l'environnement » apparue peu après la Seconde Guerre mondiale, qui se souciait de l'impact des rejets toxiques sur l'environnement. Le terme apparaît en 1969 sous la plume du toxicologue René Truhaut. En France deux universités (Metz et Orsay) ont fortement contribué à l'extension de cette discipline dans les années 1980/90, mais de nombreux laboratoires d'écotoxicologie ont dû fermer ou réduire leur champ d'activité au champ biomédical faute de crédit de recherche ou de soutien des universités[4].

Alors que la toxicologie classique limite ses études aux organismes, l'écotoxicologie tente de mesurer l'impact des substances chimiques, physiques ou biochimiques, non seulement sur les individus mais aussi sur les populations et les écosystèmes entiers et sur les équilibres dynamiques qui les caractérisent.

Dans les années 1990, une nouvelle discipline semble informellement émerger, dite « Écotoxicologie du paysage » (« landscape ecotoxicology »[5]), qui vise à mieux tenir compte des interactions entre les processus de l'écologie du paysage et les toxiques environnementaux[6] et en particulier pour de espèces très contraintes par leurs corridors biologiques (saumon par exemple[7]).

Champ de recherche[modifier | modifier le code]

L'écotoxicologie a depuis ses débuts travaillé parallèlement à la compréhension des mécanismes d'action et des impacts (directs et/ou indirects, immédiats et/ou différés) de toxiques ou de cocktails de toxiques sur des individus et populations, à partir de la pollution d'un ou plusieurs milieux et/ou des réseaux trophiques, et sur leurs effets à plusieurs échelles, de l'échelle de l'individu à celle de la biosphère, en passant par les populations, métapopulations, biomes, etc.

Les écotoxicologues se sont d'abord intéressé à l'occurrence, à l'étendue et aux impacts des polluants classiques (chimiques), puis, plus récemment, de polluants tels que la radioactivité, les transgènes, les prions, les perturbateurs endocriniens, etc.

Les sources de pollutions les plus étudiées sont l'industrie, la production d'énergie, les transports, les déchets et leur gestion ainsi que l'agriculture moderne (engrais, pesticides, émanations (eutrophisants, gaz à effet de serre..), contaminations biochimique..).

Les modes d'action des polluants dans l'environnement, dont sur la santé, la croissance, la productivité biologique, la santé reproductive, le potentiel biotique, les mutations, les relations prédateur/proie, les symbioses et mutualismes, etc.

Les résistances naturelles ou stratégies des organismes et populations face aux toxiques (tolérance, résistance, phénomènes de détoxication..)

Les polluants dispersés en petites quantités, mais de manière chronique, et les synergies entre polluants sont deux domaines dont les enjeux sont particulièrement importants pour l'écotoxicologue

Cycle biogéochimique des polluants, et circulation dans les réseaux trophiques, via la bioturbation et leur bioaccumulation dans la biomasse, et leur devenir dans la nécromasse, selon leur biodégrabilité (voir biodégradation) et durée de demie-vie.

Évaluation des risques[8][modifier | modifier le code]

L’évaluation des risques (« Risk assessment ») en écotoxicologie est une percée actuelle en environnement. Vu sous un angle biologique, ce domaine interdisciplinaire a pour but de déterminer les effets des polluants sur la santé des espèces et des peuplements dans leurs habitats naturels. Ultimement, elle permet d’en viser les effets sur la santé des populations humaines. Plusieurs domaines majeurs en science y travaillent ensemble, entre autres, l’écologie théorique, la physiologie, l'écoépidémiologie et la chimie.

L'écotoxicologie et la dimension temporelle[modifier | modifier le code]

En matière de prise en compte du fil du temps, plusieurs perspectives se complètent en écotoxicologie ; « rétrospective » et « prédictive ».

Grâce aux études établies sur la réponse des systèmes biologiques complexes aux polluants, l’écotoxicologie rétrospective interprète l’effet des polluants a posteriori, en s'appuyant sur les données paléontologique, évolutive. Ainsi, l'écopotentialité d'un milieu ou d'une région peut être approchée, et des lignes directrices peuvent être établies afin d’assurer la protection de l’environnement et définir ce que pourrait être le bon état écologique, et le chemin à parcourir pour l'atteindre.

L’écotoxicologie prédictive s’applique à établir et prévoir le comportement et les effets de substances chimiques pouvant interférer et plus ou moins durablement persister dans l’environnement ou accidentellement s'y retrouver, et dont l’examen au préalable remet en question leur prochaine commercialisation. Cette perspective entre dans les objectifs de la méthodologie de l’évaluation des risques pour la santé des écosystèmes ainsi que dans la mise au point pour l’efficacité des méthodes faisant partie d’une autre percée actuelle en environnement : la protection environnementale.

Protection environnementale[modifier | modifier le code]

La protection environnementale[8] (e.g. lutte contre la pollution, préservation de la santé publique, des ressources naturelles, prévention des pollutions et nuisances) est donc la porte d’entrée en biosurveillance (encore exprimée « monitoring biologique » ou « biomonitoring ») qui renforce ses méthodes par l’utilisation montante des bioindicateurs (de contamination et d’effet) ainsi que des biomarqueurs (d’exposition, d’effet et de sensibilité aux effets).

Discussion[modifier | modifier le code]

La technologie liée à l’évaluation des risques évolue rapidement. Il existe aujourd’hui un besoin urgent d’acquérir une série de données solides sur les effets associés aux polluants, et ce, à tous les niveaux d’organisation. L’étude des effets aiguës et à long terme demande de la prudence dans l’interprétation des effets reliés à plusieurs toxiques, car certains font des erreurs en assumant que les stades de vie les plus sensibles sont les mêmes stades de vie critiques d’une population, ou en assumant que les effets sont additifs[9].

On peut étudier les effets d’un toxique selon leurs relations avec le taux de croissance de la population ainsi que selon les traits de l’individu (survie et reproduction) qui y contribuent en examinant les théories des dynamiques de la population et en révisant le travail expérimental. Les réponses aux toxiques selon le taux de croissance seraient plus appropriées que les effets au niveau de l’individu, car ce taux intègre les interactions potentiellement complexes de l’histoire de vie des traits et fournit une mesure plus appropriée des impacts en écologie[10].

De grands efforts ont été déployés en écotoxicologie pour développer et appliquer les biomarqueurs. Les scientifiques ont désiré obtenir des indicateurs qui allaient donner une réponse anticipée des effets avant qu’ils ne surviennent sur les individus et populations. Aussi, on a voulu une meilleure identification des causes liées aux effets observés à ces niveaux. Cependant, la portée des biomarqueurs pouvant fournir des indicateurs écologiques, à la fois non ambiguës et correspondant à l’exposition ou aux effets des toxiques, demeure fortement controversée. Bien que les biomarqueurs puissent aider à donner un aperçu des mécanismes pouvant causer les effets observés des substances chimiques sur la performance de tout l’organisme, et bien qu’ils peuvent dans certains cas fournir des indicateurs d’exposition utiles, les réponses des biomarqueurs au niveau de l’individu ne fournissent probablement pas de prédictions utiles des effets écologiques correspondants. Les biomarqueurs fournissent de meilleures prédictions que s’ils sont utilisés dans un modèle intégrant les mesures de fitness. Autrement, et étant donné que le but de la biosurveillance environnementale et de l’évaluation des risques écologiques est de détecter et de prédire les divers impacts chimiques sur les populations, les communautés et les écosystèmes, les efforts devraient se centrer davantage sur des méthodes qui amélioreraient directement cette perspective[11].

Note de définition[modifier | modifier le code]

Certains emploient le terme biomoniteur (« biomonitor ») au lieu de bioindicateur lorsque celui-ci met l’accent sur une espèce en particulier qui accumule des métaux lourds dans ses tissus et qui peut être analysée en tant que mesure de la biodisponibilité des métaux dans l’habitat dans lequel elle vit[12]. Une multitude de biomoniteurs permettent de reconnaître la présence et l’intensité relative de différentes sources de métaux. Par exemple, une algue macrophyte répond essentiellement et seulement aux sources de métaux dissous, un animal qui récolte les particules en suspension comme la moule répond aux sources de métaux en phase dissoute et suspendue et, un animal qui s’alimente sur le dépôt du fond répond aux sources de métaux dans les sédiments.

Méthode[modifier | modifier le code]

La déduction de phénomènes toxicologiques et écotoxiques observés in situ (ex : Catastrophe de Minamata) est utilisée pour poser des hypothèses, validées ou non par la méthode expérimentale, des tests et la modélisation. Des molécules sont étudiées pour certaines caractéristiques écotoxiques et pour leur capacité à agir en synergie avec d'autres molécules (écotoxiques ou non). Des outils de biologie moléculaire ou de la transcriptomique peuvent être utilisés ; on est alors dans le domaine de l'écotoxicologie moléculaire.

En France[modifier | modifier le code]

  • Un programme national d’écotoxicologie (PNETOX) a été mis en place par le Ministère chargé de l'environnement en 1996. En 2008, un colloque de restitution[13] a été mis en forme pour répondre à deux questions :
    • Comment la connaissance et les méthodes de l'écotoxicologie peuvent contribuer à une meilleure gestion des milieux ?
    • La connaissance produite et les méthodes développées par l'écotoxicologie permettront-elles dans le futur de mieux gérer les milieux (dont en prenant en compte de nouvelles approches pour répondre à la question des polluants émergents) ?
  • Un Pôle national applicatif en toxicologie et écotoxicologie[14] a été créé le 15 janvier 2009 pour développer les orientations des PNSE (I et II) et du rapport final du Comité Opérationnel sur la Recherche du Grenelle de l’environnement[15]. Il vise aussi à répondre aux enjeux et urgences de la directive REACH[16], qui impose notamment des méthodes alternatives aux essais sur animaux pour l'évaluation des substances, pour des raisons éthiques et pour diminuer les couts de l'évaluation in vivo de la toxicité d'une molécule (jusqu'à 75 % des coûts d'une étude[17]). Il vise la mise en réseau des chercheurs du domaine et l'atteinte d'une « taille critique de niveau international ». Ce pôle vise à développer les partenariats public-privé, clarifier et finaliser des axes communs de recherche, contribuer à l'effort national d'enseignement du domaine, développer des équipements et mettre en réseau ceux qui existent ainsi que le transfert de technologie et des start-up[17].

Notes et références[modifier | modifier le code]

  1. Amiard-Triquet Claude, Amiard Jean-Claude, Raibow Philip S. (2013), Ecological biomarkers: Indicators of toxicological effects ; 01-2013 ; 450 p
  2. Ramade, Écotoxicologie, Ed : Masson (1re édition) 1977
  3. Ramade, François (2007), Introduction à l'écotoxicologie : Fondements et applications ; 03-2007 ; Lavoisier, 618 p.
  4. F.Ramade, Précis d'écotoxicologie, Collection d'écologie 22, Masson, mai 1992 ISBN 2-225-82578-5
  5. Clémentine Fritsch, Michaël Cœurdassier, Patrick Giraudoux, Francis Raoul, Francis Douay, Dominique Rieffel, Annette de Vaufleury and Renaud Scheifler (2011) Spatially Explicit Analysis of Metal Transfer to Biota: Influence of Soil Contamination and Landscape ; PLoS One. 2011; 6(5): e20682. Published online 2011 May 31. doi: 10.1371/journal.pone.0020682
  6. Ares J. (2003) Time and space issues in ecotoxicology: population models, landscape pattern analysis, and long-range environmental chemistry. Environ Toxicol Chem. 2003 May; 22(5):945-57.
  7. . Feist BE, Buhle ER, Arnold P, Davis JW, Scholz NL. (2001) Landscape ecotoxicology of coho salmon spawner mortality in urban streams PLoS One. 2011; 6(8):e23424. Epub 2011 Aug 17
  8. a et b Ramade, François 2007. Introduction à l’écotoxicologie – Fondements et applications. Éditions TEC & DOC, France, 618 pp.
  9. Newman M.C. et Unger M.A. 2003. Fundamentals of Ecotoxicology (2nd Ed). Lewis Publishers, É.-U., 458 pp
  10. Forbes V.E. et Calow P. 1999. Is the per capita rate of increase a good measure of population-level effects in ecotoxicology? Environmental Toxicology and Chemistry, 18 (7) : 1544 –1556
  11. Forbes V.E. et al. 2006. The use and misuse of biomarkers in ecotoxicology. Environmental Toxicology and Chemistry, 25 (1) : 272–280
  12. Rainbow P.S. 1995. Biomonitoring of Heavy Metal Availability in the Marine Environment. Marine Pollution Bulletin, 31 (4-12) : 183-192.
  13. annonce et programme du colloque "Ecotoxicologie terrestre et aquatique : de la recherche à la gestion des milieux", organisé par le MEEDDAT et par l'INERIS les 13 et 14 octobre 2008 à Lille
  14. site du Pôle national applicatif en toxicologie et écotoxicologie
  15. Extraits du dossier de presse du Comité opérationnel recherche]
  16. Comment la recherche en toxicologie-écotoxicologie peut répondre aux enjeux de REACh ? (consulté 2010/04/08)
  17. a et b présentation du « Pôle national applicatif en toxicologie et écotoxicologie », par l'INERIS (consulté 2010/04/08)

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

  • (en) Walker, C.H., S.P. H opkin, R.M. Sibly et D.B. Peakall (2001). Principles of ecotoxicology. Second Édition. Taylor & Francis
  • (en) Catherine A. Harris, Alexander P. Scott, Andrew C. Johnson, Grace H. Panter, Dave Sheahan, Mike Roberts, John P. Sumpter (2014): Principles of Sound Ecotoxicology. Environ. Sci. Technol., Article ASAP, DOI: 10.1021/es4047507

Liens externes[modifier | modifier le code]