Échelle de magnitude du moment

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

La magnitude de moment est une échelle logarithmique quantifiant la magnitude d'un séisme. Elle a été introduite en 1979 par Thomas C. Hanks et Hiroo Kanamori pour succéder à l'échelle de Richter[1]. La magnitude de moment ou de Kanamori, notée Mw, est un nombre sans dimension défini par :

M_\mathrm{w} = {2 \over 3}\log_{10} (M_0) - 6.03

M0 est le moment sismique en [N.m].

Une augmentation d'une unité sur cette échelle logarithmique correspond à une multiplication par √1000 (environ 31,6) de l'énergie libérée (démonstration ci-dessous). Les constantes de la formule sont choisies pour coïncider avec l'échelle locale de magnitude (dite échelle de Richter) pour les petits et moyens séismes. Contrairement à cette dernière, la magnitude de moment ne présente pas de saturation pour les séismes de forte magnitude.

Lien avec l'énergie sismique rayonnée[modifier | modifier le code]

Durant un séisme, l'énergie potentielle stockée dans la croûte terrestre est libérée et produit :

  • des fissures et déformations ;
  • de la chaleur ;
  • de l'énergie sismique rayonnée sous forme d'ondes sismiques, notée Es.

Les sismographes ne mesurent que cette dernière, à partir de laquelle l'énergie totale libérée, indiquée par M0, est estimée grâce à la relation :

E_\mathrm{s} = M_0\cdot 1,6\times 10^{-5}

Comparaison de l'énergie libérée par 2 séismes[modifier | modifier le code]

Considérons deux séismes i et j ayant respectivement pour magnitude de moment Mwi et Mwj et pour moment sismique Mi et Mj. Le rapport d'énergie sismique rayonnée peut s'écrire:

\frac{E_{si}}{E_{sj}}=\frac{M_i}{M_j}=\frac{10^{\frac{3}{2}(M_{wi}+6)}}{10^{\frac{3}{2}(M_{wj}+6)}}=10^{\frac{3}{2}(M_{wi}-M_{wj})}

Ainsi, le rapport d'énergie libérée entre un séisme de magnitude de moment 8 et un autre de 9 est de : 10^{1,5} soit environ 31,6.

Sources[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

  • (en) T.C. Hanks et H. Kanamori, « A moment magnitude scale », Journal of Geophysical Research, vol. 84, no B5,‎ 1979, p. 2348-50.
  • (en) G.L. Choy et J.L. Boatwright, « Global patterns of radiated seismic energy and apparent stress », Journal of Geophysical Research, vol. 100, no B9,‎ 1995, p. 18205-28.
  • (en) T. Utsu, « Relationships between magnitude scales », Lee, W.H.K, Kanamori, H., Jennings, P.C., and Kisslinger, C., editors, International Handbook of Earthquake and Engineering Seismology: Academic Press, a division of Elsevier, two volumes, International Geophysics, vol. 81-A,‎ 2002, p. 733-746.

Références[modifier | modifier le code]

  1. (en) Thomas C. Hanks et Hiroo Kanamori, « Moment magnitude scale », Journal of Geophysical Research, vol. 84, no B5,‎ mai 1979, p. 2348-2350 (lire en ligne).

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Lien externe[modifier | modifier le code]